20 research outputs found

    Development of a laboratory system and 2D routing analysis to determine solute mixing within aquatic vegetation

    Get PDF
    A laser induced fluorometry (LIF) system was developed to quantify mixing within spatially variable aquatic vegetation. A comparison is made between intrusive fluorometry techniques and the application of LIF, to quantify mixing in real vegetation in the laboratory setting. LIF provides greater spatial resolution when compared to point fluorometry. Furthermore, LIF is non-intrusive. A two-dimensional routing procedure is used to calculate the longitudinal and transverse velocities and mixing coefficients from a single pulse injection of tracer within a vegetation patch

    Feasibility of the porous zone approach to modelling vegetation in CFD

    Get PDF
    Vegetation within stormwater ponds varies seasonly and its presence affects the flow field, which in turn affects the pond’s Residence Time Distribution and its effectiveness at pollutant removal. Vegetated flows are complex and, as a result, few suitable tools exist for evaluating realistic stormwater pond designs. Recent research has suggested using a porous zone to represent vegetation within a CFD model, and this paper investigates the feasibility of this approach using ANSYS Fluent. One of the main benefits of using a porous zone is the ability to derive the relevant parameters from the known physical characteristics of stem diameter and porosity using the Ergun equation. A sensitivity analysis on the viscous resistance factor 1/α1/α and the inertial resistance factor C2C2 has been undertaken by comparing model results to data collected from an experimental vegetated channel. Best fit values of C2C2 were obtained for a range of flow conditions including emergent and submerged vegetation. Results show the CFD model to be insensitive to 1/α1/α but very sensitive to values of C2C2. For submerged vegetation, values of C2C2 derived from the Ergun equation are under-predictions of best-fit C2C2 values as only the turbulence due to the shear layer is represented. The porous zone approach does not take into account turbulence generated from stem wakes such that no meaningful predictions for emergent vegetation were obtained. C2C2 values calculated using a force balance show better agreement with best-fit C2C2 values than those derived from the Ergun equation. Manually fixing values of kk and ΔΔ within the porous zone of the model shows initial promise as a means of taking stem wakes into account

    A stem spacing‐based non‐dimensional model for predicting longitudinal dispersion in low‐density emergent vegetation

    Get PDF
    Predicting how pollutants disperse in vegetation is necessary to protect natural watercourses. This can be done using the one-dimensional advection dispersion equation, which requires estimates of longitudinal dispersion coefficients in vegetation. Dye tracing was used to obtain longitudinal dispersion coefficients in emergent artificial vegetation of different densities and stem diameters. Based on these results, a simple non-dimensional model, depending on velocity and stem spacing, was developed to predict the longitudinal dispersion coefficient in uniform emergent vegetation at low densities (solid volume fractions < 0.1). Predictions of the longitudinal dispersion coefficient from this simple model were compared with predictions from a more complex expression for a range of experimental data, including real vegetation. The simple model was found to predict correct order of magnitude dispersion coefficients and to perform as well as the more complex expression. The simple model requires fewer parameters and provides a robust engineering approximation

    Efficacy of a multifaceted podiatry intervention to improve balance and prevent falls in older people: study protocol for a randomised trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls in older people are a major public health problem, with at least one in three people aged over 65 years falling each year. There is increasing evidence that foot problems and inappropriate footwear increase the risk of falls, however no studies have been undertaken to determine whether modifying these risk factors decreases the risk of falling. This article describes the design of a randomised trial to evaluate the efficacy of a multifaceted podiatry intervention to reduce foot pain, improve balance, and reduce falls in older people.</p> <p>Methods</p> <p>Three hundred community-dwelling men and women aged 65 years and over with current foot pain and an increased risk of falling will be randomly allocated to a control or intervention group. The "usual cae" control group will receive routine podiatry (i.e. nail care and callus debridement). The intervention group will receive usual care plus a multifaceted podiatry intervention consisting of: (i) prefabricated insoles customised to accommodate plantar lesions; (ii) footwear advice and assistance with the purchase of new footwear if current footwear is inappropriate; (iii) a home-based exercise program to strengthen foot and ankle muscles; and (iv) a falls prevention education booklet. Primary outcome measures will be the number of fallers, number of multiple fallers and the falls rate recorded by a falls diary over a 12 month period. Secondary outcome measures assessed six months after baseline will include the Medical Outcomes Study Short Form 12 (SF-12), the Manchester Foot Pain and Disability Index, the Falls Efficacy Scale International, and a series of balance and functional tests. Data will be analysed using the intention to treat principle.</p> <p>Discussion</p> <p>This study is the first randomised trial to evaluate the efficacy of podiatry in improving balance and preventing falls. The trial has been pragmatically designed to ensure that the findings can be generalised to clinical practice. If found to be effective, the multifaceted podiatry intervention will be a unique addition to common falls prevention strategies already in use.</p> <p>Trial registration</p> <p>Australian New Zealand Clinical Trials Registry: ACTRN12608000065392</p
    corecore