32 research outputs found

    A penalized likelihood based pattern classification algorithm

    Full text link
    Penalized likelihood is a general approach whereby an objective function is defined, consisting of the log likelihood of the data minus some term penalizing non-smooth solutions. Subsequently, this objective function is maximized, yielding a solution that achieves some sort of trade-off between the faithfulness and the smoothness of the fit. Most work on that topic focused on the regression problem, and there has been little work on the classification problem. In this paper we propose a new classification method using the concept of penalized likelihood (for the two class case). By proposing a novel penalty term based on the K-nearest neighbors, simple analytical derivations have led to an algorithm that is proved to converge to the global optimum. Moreover, this algorithm is very simple to implement and converges typically in two or three iterations. We also introduced two variants of the method by distance-weighting the K-nearest neighbor contributions, and by tackling the unbalanced class patterns situation. We performed extensive experiments to compare the proposed method to several well-known classification methods. These simulations reveal that the proposed method achieves one of the top ranks in classification performance and with a fairly small computation time. © 2009 Elsevier Ltd. All rights reserved

    Pattern classification using a penalized likelihood method

    Full text link
    Penalized likelihood is a well-known theoretically justified approach that has recently attracted attention by the machine learning society. The objective function of the Penalized likelihood consists of the log likelihood of the data minus some term penalizing non-smooth solutions. Subsequently, maximizing this objective function would lead to some sort of trade-off between the faithfulness and the smoothness of the fit. There has been a lot of research to utilize penalized likelihood in regression, however, it is still to be thoroughly investigated in the pattern classification domain. We propose to use a penalty term based on the K-nearest neighbors and an iterative approach to estimate the posterior probabilities. In addition, instead of fixing the value of K for all pattern, we developed a variable K approach, where the number of neighbors can vary from one sample to another. The chosen value of K for a given testing sample is influenced by the K values of its surrounding training samples as well as the most successful K value of all training samples. Comparison with a number of well-known classification methods proved the potential of the proposed method. © 2010 Springer-Verlag

    Optoelectronic Reservoir Computing

    Get PDF
    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an opto-electronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.Comment: Contains main paper and two Supplementary Material

    Thermal analysis of horizontal earth-air heat exchangers in a subtropical climate: An experimental study

    Get PDF
    The earth-air heat exchanger (EHX) has a promising potential to passively save the energy consumption of traditional air conditioning systems while maintaining a high degree of indoor comfort. The use of EHX systems for air conditioning in commercial and industrial settings offers several environmental benefits and is capable of operating in both standalone and hybrid modes. This study tests the performance and effectiveness of an EHX design in a sandy soil area in Baghdad, Iraq. The area has a climate of the subtropical semi-humid type. Ambient air temperatures and soil temperatures were recorded throughout the months of 2021. During the months of January and June, the temperatures of the inlet and outflow air at varying air velocities were monitored concurrently in 10-min increments at each location. Further numerical and thermodynamical analyses of the measurements were conducted to reveal the influencing performance parameters. The highest temperature rises of air between the input and exit sections were determined as 12.3°C (January) and 17.2°C (June). It is found that the maximum values of effectiveness are 0.80 and 0.81, while coefficients of performance are 1.6 and 1.8 for January and June, respectively. It is also found that the EHX shows good functionality and effectiveness, with potential energy savings for equipment for cooling and heating under different weather conditions

    A Metric Framework for quantifying Data Concentration

    Get PDF
    Poor performance of artificial neural nets when applied to credit-related classification problems is investigated and contrasted with logistic regression classification. We propose that artificial neural nets are less successful because of the inherent structure of credit data rather than any particular aspect of the neural net structure. Three metrics are developed to rationalise the result with such data. The metrics exploit the distributional properties of the data to rationalise neural net results. They are used in conjunction with a variant of an established concentration measure that differentiates between class characteristics. The results are contrasted with those obtained using random data, and are compared with results obtained using logistic regression. We find, in general agreement with previous studies, that logistic regressions out-perform neural nets in the majority of cases. An approximate decision criterion is developed in order to explain adverse results

    Information processing using a single dynamical node as complex system

    Get PDF
    Novel methods for information processing are highly desired in our information-driven society. Inspired by the brain's ability to process information, the recently introduced paradigm known as 'reservoir computing' shows that complex networks can efficiently perform computation. Here we introduce a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback. Through an electronic implementation, we experimentally and numerically demonstrate excellent performance in a speech recognition benchmark. Complementary numerical studies also show excellent performance for a time series prediction benchmark. These results prove that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing. This finding paves the way to feasible and resource-efficient technological implementations of reservoir computing

    Predicting Physical Time Series Using Dynamic Ridge Polynomial Neural Networks

    Get PDF
    Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques

    Multiclass penalized likelihood pattern classification algorithm

    Full text link
    Penalized likelihood is a general approach whereby an objective function is defined, consisting of the log likelihood of the data minus some term penalizing non-smooth solutions. Subsequently, this objective function is maximized, yielding a solution that achieves some sort of trade-off between the faithfulness and the smoothness of the fit. In this paper we extend the penalized likelihood classification that we proposed in earlier work to the multi class case. The algorithms are based on using a penalty term based on the K-nearest neighbors and the likelihood of the training patterns' classifications. The algorithms are simple to implement, and result in a performance competitive with leading classifiers. © 2012 Springer-Verlag
    corecore