216 research outputs found

    Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains

    Get PDF
    The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel ``meta-polycentric'' functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function

    Clinical Deterioration during Antitubercular Treatment at a District Hospital in South Africa: The Importance of Drug Resistance and AIDS Defining Illnesses

    Get PDF
    Background: Clinical deterioration on drug therapy for tuberculosis is a common cause of hospital admission in Africa. Potential causes for clinical deterioration in settings of high HIV-1 prevalence include drug resistant Mycobacterium tuberculosis (M.tb), co-morbid illnesses, poor adherence to therapy, tuberculosis associated-immune reconstitution inflammatory syndrome (TB-IRIS) and subtherapeutic antitubercular drug levels. It is important to derive a rapid diagnostic work-up to determine the cause of clinical deterioration as well as specific management to prevent further clinical deterioration and death. We undertook this study among tuberculosis (TB) patients referred to an adult district level hospital situated in a high HIV-1 prevalence setting to determine the frequency, reasons and outcome for such clinical deterioration. Method: A prospective observational study conducted during the first quarter of 2007. We defined clinical deterioration as clinical worsening or failure to stabilise after 14 or more days of antitubercular treatment, resulting in hospital referral. We collected data on tuberculosis diagnosis and treatment, HIV-1 status and antiretroviral treatment, and investigated reasons for clinical deterioration as well as outcome. Results: During this period, 352 TB patients met inclusion criteria; 296 were admitted to hospital accounting for 17% of total medical admissions (n = 1755). Eighty three percent of TB patients (291/352) were known to be HIV-1 co-infected with a median CD4 count of 89cells/mm3 (IQR 38-157). Mortality among TB patients admitted to hospital was 16% (n = 48). The median duration of hospital admission was 9.5 days (IQR 4-18), longer than routine in this setting (4 days). Among patients in whom HIV-1 status was known (n = 324), 72% of TB patients (n = 232) had an additional illness to tuberculosis; new AIDS defining illnesses (n = 80) were the most frequent additional illnesses (n = 208) in HIV-1 co-infected patients (n = 291). Rifampin-resistant M.tb (n = 41), TB-IRIS (n = 51) and drug resistant bacterial infections (n = 12) were found in 12%, 14% and 3.4% of the 352 cases, respectively. Interpretation: In our setting, new AIDS defining illnesses, drug resistant M.tb and other drug resistant bacteria are important reasons for clinical deterioration in HIV-1 co-infected patients receiving antitubercular treatment. HIV-1 coinfected patients may be at increased risk of acquiring nosocomial drug resistant pathogens because profound immune suppression results in co-morbid illnesses that require prolonged inpatient admissions. Routine infection control is essential and needs to be strengthened in our setting. Copyright: © 2009 Pepper et al

    Angiogenesis extent and macrophage density increase simultaneously with pathological progression in B-cell non-Hodgkin's lymphomas

    Get PDF
    Node biopsies of 30 benign lymphadenopathies and 71 B-cell non-Hodgkin's lymphomas (B-NHLs) were investigated for microvessel and macrophage counts using immunohistochemistry and morphometric analysis. Both counts were significantly higher in B-NHL. Moreover, when these were grouped into low-grade and high-grade lymphomas, according to the Kiel classification and Working Formulation (WF), statistically significant higher counts were found in the high-grade tumours. Immunohistochemistry and electron microscopy revealed a close spatial association between microvessels and macrophages. Overall, the results suggest that, in analogy to what has already been shown in solid tumours, angiogenesis occurring in B-NHLs increases with tumour progression, and that macrophages promote the induction of angiogenesis via the release of their angiogenic factors. © 1999 Cancer Research Campaig

    Benign mammary epithelial cells enhance the transformed phenotype of human breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent research has yielded a wealth of data underscoring the key role of the cancer microenvironment, especially immune and stromal cells, in the progression of cancer and the development of metastases. However, the role of adjacent benign epithelial cells, which provide initial cell-cell contacts with cancer cells, in tumor progression has not been thoroughly examined. In this report we addressed the question whether benign MECs alter the transformed phenotype of human breast cancer cells.</p> <p>Methods</p> <p>We used both <it>in vitro </it>and <it>in vivo </it>co-cultivation approaches, whereby we mixed GFP-tagged MCF-10A cells (G2B-10A), as a model of benign mammary epithelial cells (MECs), and RFP-tagged MDA-MB-231-TIAS cells (R2-T1AS), as a model of breast cancer cells.</p> <p>Results</p> <p>The <it>in vitro </it>studies showed that G2B-10A cells increase the colony formation of R2-T1AS cells in both soft agar and clonogenicity assays. Conditioned media derived from G2B-10A cells enhanced colony formation of R2-T1AS cells, whereas prior paraformaldehyde (PFA) fixation of G2B-10A cells abrogated this enhancement effect. Moreover, two other models of benign MECs, MCF-12A and HuMECs, also enhanced R2-T1AS colony growth in soft agar and clonogenicity assays. These data reveal that factors secreted by benign MECs are responsible for the observed enhancement of the R2-T1AS transformed phenotype. To determine whether G2B-10A cells enhance the tumorigenic growth of co-injected R2-T1AS cells <it>in vivo</it>, we used the nude mouse xenograft assay. Co-injecting R2-T1AS cells with G2B-10A cells ± PFA-fixation, revealed that G2B-10A cells promoted a ~3-fold increase in tumor growth, irrespective of PFA pre-treatment. These results indicate that soluble factors secreted by G2B-10A cells play a less important role in promoting R2-T1AS tumorigenesis <it>in vivo</it>, and that additional components are operative in the nude mouse xenograft assay. Finally, using array analysis, we found that both live and PFA-fixed G2B-10A cells induced R2-T1AS cells to secrete specific cytokines (IL-6 and GM-CSF), suggesting that cell-cell contact activates R2-T1AS cells.</p> <p>Conclusions</p> <p>Taken together, these data shift our understanding of adjacent benign epithelial cells in the cancer process, from passive, noncontributory cells to an active and tumor-promoting vicinal cell population that may have significant effects early, when benign cells outnumber malignant cells.</p

    Problems of multi-species organisms: endosymbionts to holobionts

    Get PDF
    The organism is one of the fundamental concepts of biology and has been at the center of many discussions about biological individuality, yet what exactly it is can be confusing. The definition that we find generally useful is that an organism is a unit in which all the subunits have evolved to be highly cooperative, with very little conflict. We focus on how often organisms evolve from two or more formerly independent organisms. Two canonical transitions of this type—replicators clustered in cells and endosymbiotic organelles within host cells—demonstrate the reality of this kind of evolutionary transition and suggest conditions that can favor it. These conditions include co-transmission of the partners across generations and rules that strongly regulate and limit conflict, such as a fair meiosis. Recently, much attention has been given to associations of animals with microbes involved in their nutrition. These range from tight endosymbiotic associations like those between aphids and Buchnera bacteria, to the complex communities in animal intestines. Here, starting with a reflection about identity through time (which we call “Theseus’s fish”), we consider the distinctions between these kinds of animal–bacteria interactions and describe the criteria by which a few can be considered jointly organismal but most cannot

    The mir-51 Family of microRNAs Functions in Diverse Regulatory Pathways in Caenorhabditis elegans

    Get PDF
    The mir-51 family of microRNAs (miRNAs) in C. elegans are part of the deeply conserved miR-99/100 family. While loss of all six family members (mir-51-56) in C. elegans results in embryonic lethality, loss of individual mir-51 family members results in a suppression of retarded developmental timing defects associated with the loss of alg-1. The mechanism of this suppression of developmental timing defects is unknown. To address this, we characterized the function of the mir-51 family in the developmental timing pathway. We performed genetic analysis and determined that mir-51 family members regulate the developmental timing pathway in the L2 stage upstream of hbl-1. Loss of the mir-51 family member, mir-52, suppressed retarded developmental timing defects associated with the loss of let-7 family members and lin-46. Enhancement of precocious defects was observed for mutations in lin-14, hbl-1, and mir-48(ve33), but not later acting developmental timing genes. Interestingly, mir-51 family members showed genetic interactions with additional miRNA-regulated pathways, which are regulated by the let-7 and mir-35 family miRNAs, lsy-6, miR-240/786, and miR-1. Loss of mir-52 likely does not suppress miRNA-regulated pathways through an increase in miRNA biogenesis or miRNA activity. We found no increase in the levels of four mature miRNAs, let-7, miR-58, miR-62 or miR-244, in mir-52 or mir-52/53/54/55/56 mutant worms. In addition, we observed no increase in the activity of ectopic lsy-6 in the repression of a downstream target in uterine cells in worms that lack mir-52. We propose that the mir-51 family functions broadly through the regulation of multiple targets, which have not yet been identified, in diverse regulatory pathways in C. elegans

    Genetic architecture of gene expression in ovine skeletal muscle

    Get PDF
    In livestock populations the genetic contribution to muscling is intensively monitored in the progeny of industry sires and used as a tool in selective breeding programs. The genes and pathways conferring this genetic merit are largely undefined. Genetic variation within a population has potential, amongst other mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information for a muscling trait with progeny-based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle. Results The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing and expressed as an Estimated Breeding Value by comparison with contemporary sires. Microarray gene expression data were obtained for longissimus lumborum samples taken from forty progeny of the six sires (4-8 progeny/sire). Initial unsupervised hierarchical clustering analysis revealed strong genetic architecture to the gene expression data, which also discriminated the sire-based Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding Value weighted gene co-expression network analysis and a differential gene co-expression network analysis. The modules of genes revealed by these analyses were enriched for a number of functional terms summarised as muscle sarcomere organisation and development, protein catabolism (proteosome), RNA processing, mitochondrial function and transcriptional regulation. Conclusions This study has revealed strong genetic structure in the gene expression program within ovine longissimus lumborum muscle. The balance between muscle protein synthesis, at the levels of both transcription and translation control, and protein catabolism mediated by regulated proteolysis is likely to be the primary determinant of the genetic merit for the muscling trait in this sheep population. There is also evidence that high genetic merit for muscling is associated with a fibre type shift toward fast glycolytic fibres. This study provides insight into mechanisms, presumably subject to strong artificial selection, that underpin enhanced muscling in sheep populations

    Collaborative care for the detection and management of depression among adults with hypertension in South Africa: study protocol for the PRIME-SA randomised controlled trial

    Get PDF
    Background: The high co-morbidity of mental disorders, particularly depression, with non-communicable diseases (NCDs) such as cardiovascular disease (CVD), is concerning given the rising burden of NCDs globally, and the role depression plays in confounding prevention and treatment of NCDs. The objective of this randomised control trial (RCT) is to determine the real-world effectiveness of strengthened depression identification and management on depression outcomes in hypertensive patients attending primary health care (PHC) facilities in South Africa (SA). Methods/design: The study design is a pragmatic, two-arm, parallel-cluster RCT, the unit of randomisation being the clinics, with outcomes being measured for individual participants. The 20 largest eligible clinics from one district in the North West Province are enrolled in the trial. Equal numbers of hypertensive patients (n = 50) identified as having depression using the Patient Health Questionnaire (PHQ-9) are enrolled from each clinic, making up a total of 1000 participants with 500 in each arm. The nurse clinicians in the control facilities receive the standard training in Primary Care 101 (PC101), a clinical decision support tool for integrated chronic care that includes guidelines for hypertension and depression care. Referral pathways available include referrals to PHC physicians, clinical or counselling psychologists and outpatient psychiatric and psychological services. In the intervention clinics, this training is supplemented with strengthened training in the depression components of PC101 as well as training in clinical communication skills for nurse-led chronic care. Referral pathways are strengthened through the introduction of a facility-based behavioural health counsellor, trained to provide structured manualised counselling for depression and adherence counselling for all chronic conditions. The primary outcome is defined as at least 50% reduction in PHQ-9 score measured at 6 months. Discussion: This trial should provide evidence of the real world effectiveness of strengtheneddepression identification and collaborative management on health outcomes of hypertensive patients withcomorbid depression attending PHC facilities in South Africa

    TGF-β Is Required for Vascular Barrier Function, Endothelial Survival and Homeostasis of the Adult Microvasculature

    Get PDF
    Pericyte-endothelial cell (EC) interactions are critical to both vascular development and vessel stability. We have previously shown that TGF-β signaling between EC and mural cells participates in vessel stabilization in vitro. We therefore investigated the role of TGF-β signaling in maintaining microvessel structure and function in the adult mouse retinal microvasculature. TGF-β signaling was inhibited by systemic expression of soluble endoglin (sEng) and inhibition was demonstrated by reduced phospho-smad2 in the adult retina. Blockade of TGF-β signaling led to increased vascular and neural cell apoptosis in the retina, which was associated with decreased retinal function, as measured by electroretinogram (ERG). Perfusion of the inner retinal vasculature was impaired and was accompanied by defective autoregulation and loss of capillary integrity. Fundus angiography and Evans blue permeability assay revealed a breakdown of the blood-retinal-barrier that was characterized by decreased association between the tight junction proteins zo-1 and occludin. Inhibition of TGF-β signaling in cocultures of EC and 10T1/2 cells corroborated the in vivo findings, with impaired EC barrier function, dissociation of EC from 10T1/2 cells, and endothelial cell death, supporting the role of EC-mesenchymal interactions in TGF-β signaling. These results implicate constitutive TGF-β signaling in maintaining the integrity and function of the adult microvasculature and shed light on the potential role of TGF-β signaling in vasoproliferative and vascular degenerative retinal diseases
    corecore