599 research outputs found

    The separation of the East Australian Current: A Lagrangian approach to potential vorticity and upstream control

    Get PDF
    The East Australian Current (EAC) is the western boundary current flowing along the east coast of Australia separating from the coast at approximately 34°S. After the separation two main pathways can be distinguished, the eastward flowing Tasman Front and the extension of the EAC flowing southward. The area south of the separation latitude is eddy-rich and the separation latitude of the EAC is variable. Little is known of the properties of the water masses that separate at the bifurcation of the EAC. This paper presents new insights from the Lagrangian perspective, where the water masses that veer east and those that continue south are tracked in an eddy-permitting numerical model. The transport along the two pathways is computed, and a 1:3 ratio between transport in the EAC extension and transport in the Tasman Front is found. The results show that the "fate" of the particles is to first order already determined by the particle distribution within the EAC current upstream of the separation latitude, where 85% of the particles following the EAC extension originate from below 460 m and 90% of the particles following the Tasman Front originate from the top 460 m depth at 28°S. The separation and pathways are controlled by the structure of the isopycnals in this region. Analysis of anomalies in potential vorticity show that in the region where the two water masses overlap, the fate of the water depends on the presence of anticyclonic eddies that push isopycnals down and therefore enable particles to travel further south

    Treatment of asymptomatic vaginal candidiasis in pregnancy to prevent preterm birth: an open-label pilot randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the connection between ascending infection and preterm birth is undisputed, research focused on finding effective treatments has been disappointing. However evidence that eradication of <it>Candida </it>in pregnancy may reduce the risk of preterm birth is emerging. We conducted a pilot study to assess the feasibility of conducting a large randomized controlled trial to determine whether treatment of asymptomatic candidiasis in early pregnancy reduces the incidence of preterm birth.</p> <p>Methods</p> <p>We used a prospective, randomized, open-label, blinded-endpoint (PROBE) study design. Pregnant women presenting at <20 weeks gestation with singleton pregnancies self-collected a vaginal swab. Those who were asymptomatic and culture positive for <it>Candida </it>were randomized to 6-days of clotrimazole vaginal pessaries (100mg) or usual care (screening result is not revealed, no treatment). The primary outcomes were the rate of asymptomatic vaginal candidiasis, participation and follow-up. The proposed primary trial outcome of spontaneous preterm birth <37 weeks gestation was also assessed.</p> <p>Results</p> <p>Of 779 women approached, 500 (64%) participated in candidiasis screening, and 98 (19.6%) had asymptomatic vaginal candidiasis and were randomized to clotrimazole or usual care. Women were not inconvenienced by participation in the study, laboratory testing and medication dispensing were problem-free, and the follow-up rate was 99%. There was a tendency towards a reduction in spontaneous preterm birth among women with asymptomatic candidiasis who were treated with clotrimazole RR = 0.33, 95%CI 0.04-3.03.</p> <p>Conclusions</p> <p>A large, adequately powered, randomized trial of clotrimazole to prevent preterm birth in women with asymptomatic candidiasis is both feasible and warranted.</p> <p>Trial registration</p> <p>Australia and New Zealand Clinical Trials Register (ANZCTR): <a href="http://www.anzctr.org.au/ACTRN12609001052224.aspx">ACTRN12609001052224</a></p

    Message-Passing Methods for Complex Contagions

    Full text link
    Message-passing methods provide a powerful approach for calculating the expected size of cascades either on random networks (e.g., drawn from a configuration-model ensemble or its generalizations) asymptotically as the number NN of nodes becomes infinite or on specific finite-size networks. We review the message-passing approach and show how to derive it for configuration-model networks using the methods of (Dhar et al., 1997) and (Gleeson, 2008). Using this approach, we explain for such networks how to determine an analytical expression for a "cascade condition", which determines whether a global cascade will occur. We extend this approach to the message-passing methods for specific finite-size networks (Shrestha and Moore, 2014; Lokhov et al., 2015), and we derive a generalized cascade condition. Throughout this chapter, we illustrate these ideas using the Watts threshold model.Comment: 14 pages, 3 figure

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway

    Get PDF
    The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al

    Stability, Entrapment and Variant Formation of Salmonella Genomic Island 1

    Get PDF
    <div><h3>Background</h3><p>The <em>Salmonella</em> genomic island 1 (SGI1) is a 42.4 kb integrative mobilizable element containing several antibiotic resistance determinants embedded in a complex integron segment In104. The numerous SGI1 variants identified so far, differ mainly in this segment and the explanations of their emergence were mostly based on comparative structure analyses. Here we provide experimental studies on the stability, entrapment and variant formation of this peculiar gene cluster originally found in <em>S</em>. Typhimurium.</p> <h3>Methodology/Principal Findings</h3><p>Segregation and conjugation tests and various molecular techniques were used to detect the emerging SGI1 variants in <em>Salmonella</em> populations of 17 <em>Salmonella enterica</em> serovar Typhimurium DT104 isolates from Hungary. The SGI1s in these isolates proved to be fully competent in excision, conjugal transfer by the IncA/C helper plasmid R55, and integration into the <em>E. coli</em> chromosome. A trap vector has been constructed and successfully applied to capture the island on a plasmid. Monitoring of segregation of SGI1 indicated high stability of the island. SGI1-free segregants did not accumulate during long-term propagation, but several SGI1 variants could be obtained. Most of them appeared to be identical to SGI1-B and SGI1-C, but two new variants caused by deletions via a short-homology-dependent recombination process have also been detected. We have also noticed that the presence of the conjugation helper plasmid increased the formation of these deletion variants considerably.</p> <h3>Conclusions/Significance</h3><p>Despite that excision of SGI1 from the chromosome was proven in SGI1<sup>+</sup><em>Salmonella</em> populations, its complete loss could not be observed. On the other hand, we demonstrated that several variants, among them two newly identified ones, arose with detectable frequencies in these populations in a short timescale and their formation was promoted by the helper plasmid. This reflects that IncA/C helper plasmids are not only involved in the horizontal spreading of SGI1, but may also contribute to its evolution.</p> </div

    Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes

    Get PDF
    Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases
    corecore