73 research outputs found

    Remodelling of a polypyrimidine tract-binding protein complex during apoptosis activates cellular IRESs.

    Get PDF
    Post-transcriptional control of gene expression is mediated by the interaction of RNA-binding proteins with their cognate mRNAs that specifically regulate their stability, localization and translation. mRNA-binding proteins are multifunctional and it has been proposed therefore that a combinatorial RNA-binding protein code exists that allows specific protein sub-complexes to control cytoplasmic gene expression under a range of pathophysiological conditions. We show that polypyrimidine tract-binding protein (PTB) is central to one such complex that forms in apoptotic cells. Thus, during apoptosis initiated by TNF-related apoptosis inducing ligand there is a change in the repertoire of RNA-binding proteins with which PTB interacts. We show that altering the cellular levels of PTB and its binding partners, either singly or in combination, is sufficient to directly change the rates of apoptosis with increased expression of PTB, YBX1, PSF and NONO/p54(nrb) accelerating this process. Mechanistically, we show that these proteins post-transcriptionally regulate gene expression, and therefore apoptotic rates, by interacting with and stimulating the activity of RNA elements (internal ribosome entry segments) found in mRNAs that are translated during apoptosis. Taken together, our data show that PTB function is controlled by a set of co-recruited proteins and importantly provide further evidence that it is possible to dictate cell fate by modulating cytoplasmic gene expression pathways alone

    Treatment for Schistosoma japonicum, Reduction of Intestinal Parasite Load, and Cognitive Test Score Improvements in School-Aged Children

    Get PDF
    Parasitic worm infections are associated with cognitive impairment and lower academic achievement for infected relative to uninfected children. However, it is unclear whether curing or reducing worm infection intensity improves child cognitive function. We examined the independent associations between: (i) Schistosoma japonicum infection-free duration, (ii) declines in single helminth species, and (iii) joint declines of ≥2 soil-transmitted helminth (STH) infections and improvements in four cognitive tests during18 months of follow-up. Enrolled were schistosome-infected school-aged children among whom coinfection with STH was common. All children were treated for schistosome infection only at enrolment with praziquantel. Children cured or schistosome-free for >12 months scored higher in memory and verbal fluency tests compared to persistently infected children. Likewise, declines of single and polyparasitic STH infections predicted higher scores in three of four tests. We conclude that reducing the intensity of certain helminth species and the frequency of multi-species STH infections may have long-term benefits for affected children's cognitive performance. The rapidity of schistosome re-infection and the ubiquity of concurrent multi-species infection highlight the importance of sustained deworming for both schistosome and STH infections to enhance the learning and educational attainment of children in helminth-endemic settings

    A Bayesian Approach to Analyse Genetic Variation within RNA Viral Populations

    Get PDF
    The development of modern and affordable sequencing technologies has allowed the study of viral populations to an unprecedented depth. This is of particular interest for the study of within-host RNA viral populations, where variation due to error-prone polymerases can lead to immune escape, antiviral resistance and adaptation to new host species. Methods to sequence RNA virus genomes include reverse transcription (RT) and polymerase chain reaction (PCR). RT-PCR is a molecular biology technique widely used to amplify DNA from an RNA template. The method itself relies on the in vitro synthesis of copy DNA from RNA followed by multiple cycles of DNA amplification. However, this method introduces artefactual errors that can act as confounding factors when the sequence data are analysed. Although there are a growing number of published studies exploring the intra- and inter-host evolutionary dynamics of RNA viruses, the complexity of the methods used to generate sequences makes it difficult to produce probabilistic statements about the likely sources of observed sequence variants. This complexity is further compounded as both the depth of sequencing and the length of the genome segment of interest increase. Here we develop a Bayesian method to characterise and differentiate between likely structures for the background viral population. This approach can then be used to identify nucleotide sites that show evidence of change in the within-host viral population structure, either over time or relative to a reference sequence (e.g. an inoculum or another source of infection), or both, without having to build complex evolutionary models. Identification of these sites can help to inform the design of more focussed experiments using molecular biology tools, such as site-directed mutagenesis, to assess the function of specific amino acids. We illustrate the method by applying to datasets from experimental transmission of equine influenza, and a pre-clinical vaccine trial for HIV-1

    Relationship between amino acid composition and gene expression in the mouse genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Codon bias is a phenomenon that refers to the differences in the frequencies of synonymous codons among different genes. In many organisms, natural selection is considered to be a cause of codon bias because codon usage in highly expressed genes is biased toward optimal codons. Methods have previously been developed to predict the expression level of genes from their nucleotide sequences, which is based on the observation that synonymous codon usage shows an overall bias toward a few codons called major codons. However, the relationship between codon bias and gene expression level, as proposed by the translation-selection model, is less evident in mammals.</p> <p>Findings</p> <p>We investigated the correlations between the expression levels of 1,182 mouse genes and amino acid composition, as well as between gene expression and codon preference. We found that a weak but significant correlation exists between gene expression levels and amino acid composition in mouse. In total, less than 10% of variation of expression levels is explained by amino acid components. We found the effect of codon preference on gene expression was weaker than the effect of amino acid composition, because no significant correlations were observed with respect to codon preference.</p> <p>Conclusion</p> <p>These results suggest that it is difficult to predict expression level from amino acid components or from codon bias in mouse.</p

    Is plant mitochondrial RNA editing a source of phylogenetic incongruence? An answer from in silico and in vivo data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In plant mitochondria, the post-transcriptional RNA editing process converts C to U at a number of specific sites of the mRNA sequence and usually restores phylogenetically conserved codons and the encoded amino acid residues. Sites undergoing RNA editing evolve at a higher rate than sites not modified by the process. As a result, editing sites strongly affect the evolution of plant mitochondrial genomes, representing an important source of sequence variability and potentially informative characters.</p> <p>To date no clear and convincing evidence has established whether or not editing sites really affect the topology of reconstructed phylogenetic trees. For this reason, we investigated here the effect of RNA editing on the tree building process of twenty different plant mitochondrial gene sequences and by means of computer simulations.</p> <p>Results</p> <p>Based on our simulation study we suggest that the editing ‘noise’ in tree topology inference is mainly manifested at the cDNA level. In particular, editing sites tend to confuse tree topologies when artificial genomic and cDNA sequences are generated shorter than 500 bp and with an editing percentage higher than 5.0%. Similar results have been also obtained with genuine plant mitochondrial genes. In this latter instance, indeed, the topology incongruence increases when the editing percentage goes up from about 3.0 to 14.0%. However, when the average gene length is higher than 1,000 bp (<it>rps3</it>, <it>matR</it> and <it>atp1</it>) no differences in the comparison between inferred genomic and cDNA topologies could be detected.</p> <p>Conclusions</p> <p>Our findings by the here reported <it>in silico</it> and <it>in vivo</it> computer simulation system seem to strongly suggest that editing sites contribute in the generation of misleading phylogenetic trees if the analyzed mitochondrial gene sequence is highly edited (higher than 3.0%) and reduced in length (shorter than 500 bp).</p> <p>In the current lack of direct experimental evidence the results presented here encourage, thus, the use of genomic mitochondrial rather than cDNA sequences for reconstructing phylogenetic events in land plants.</p

    Schistosoma haematobium Treatment in 1–5 Year Old Children: Safety and Efficacy of the Antihelminthic Drug Praziquantel

    Get PDF
    Urogenital schistosomiasis is an important, but neglected, infectious disease affecting over 100 million people, mainly in Africa. Children carry the heaviest burden of infection with children as young as 1 year old showing signs of infection. Children aged 5 years and below are currently excluded from schistosome control programmes for several reasons, including operational difficulties associated with accessing preschool children, misconceptions about their level of exposure to infective water and lack of safety data on the drug of choice for schistosome control, praziquantel, in children aged 5 years and below. This study was one of a small number of studies recently funded by the World Health Organization to investigate the need for praziquantel treatment in preschool children (aged 1–5 years) and to subsequently assess the safety and efficacy of the drug praziquantel in this age group. This study confirmed that preschool children carry significant levels of schistosome infection, exceeding those carried by their parents/guardians, highlighting the urgent need for their immediate inclusion in schistosome control programmes. The study also showed that praziquantel treatment is as safe and efficacious in children aged 1–5 years as it is in older children aged 6–10 years who are currently the target for mass drug administration

    The Evolutionary Origin of Man Can Be Traced in the Layers of Defunct Ancestral Alpha Satellites Flanking the Active Centromeres of Human Chromosomes

    Get PDF
    Alpha satellite domains that currently function as centromeres of human chromosomes are flanked by layers of older alpha satellite, thought to contain dead centromeres of primate progenitors, which lost their function and the ability to homogenize satellite repeats, upon appearance of a new centromere. Using cladistic analysis of alpha satellite monomers, we elucidated complete layer patterns on chromosomes 8, 17, and X and related them to each other and to primate alpha satellites. We show that discrete and chronologically ordered alpha satellite layers are partially symmetrical around an active centromere and their succession is partially shared in non-homologous chromosomes. The layer structure forms a visual representation of the human evolutionary lineage with layers corresponding to ancestors of living primates and to entirely fossil taxa. Surprisingly, phylogenetic comparisons suggest that alpha satellite arrays went through periods of unusual hypermutability after they became “dead” centromeres. The layer structure supports a model of centromere evolution where new variants of a satellite repeat expanded periodically in the genome by rounds of inter-chromosomal transfer/amplification. Each wave of expansion covered all or many chromosomes and corresponded to a new primate taxon. Complete elucidation of the alpha satellite phylogenetic record would give a unique opportunity to number and locate the positions of major extinct taxa in relation to human ancestors shared with extant primates. If applicable to other satellites in non-primate taxa, analysis of centromeric layers could become an invaluable tool for phylogenetic studies

    Microbial Diversity of a Brazilian Coastal Region Influenced by an Upwelling System and Anthropogenic Activity

    Get PDF
    BACKGROUND: Upwelling systems are characterised by an intense primary biomass production in the surface (warmest) water after the outcrop of the bottom (coldest) water, which is rich in nutrients. Although it is known that the microbial assemblage plays an important role in the food chain of marine systems and that the upwelling systems that occur in southwest Brazil drive the complex dynamics of the food chain, little is known about the microbial composition present in this region. METHODOLOGY/PRINCIPAL FINDINGS: We carried out a molecular survey based on SSU rRNA gene from the three domains of the phylogenetic tree of life present in a tropical upwelling region (Arraial do Cabo, Rio de Janeiro, Brazil). The aim was to analyse the horizontal and vertical variations of the microbial composition in two geographically close areas influenced by anthropogenic activity (sewage disposal/port activity) and upwelling phenomena, respectively. A lower estimated diversity of microorganisms of the three domains of the phylogenetic tree of life was found in the water of the area influenced by anthropogenic activity compared to the area influenced by upwelling phenomena. We observed a heterogenic distribution of the relative abundance of taxonomic groups, especially in the Archaea and Eukarya domains. The bacterial community was dominated by Proteobacteria, Cyanobacteria and Bacteroidetes phyla, whereas the microeukaryotic community was dominated by Metazoa, Fungi, Alveolata and Stramenopile. The estimated archaeal diversity was the lowest of the three domains and was dominated by uncharacterised marine Crenarchaeota that were most closely related to Marine Group I. CONCLUSIONS/SIGNIFICANCE: The variety of conditions and the presence of different microbial assemblages indicated that the area of Arraial do Cabo can be used as a model for detailed studies that contemplate the correlation between pollution-indicating parameters and the depletion of microbial diversity in areas close to anthropogenic activity; functional roles and geochemical processes; phylogeny of the uncharacterised diversity; and seasonal variations of the microbial assemblages

    Natural Selection Affects Multiple Aspects of Genetic Variation at Putatively Neutral Sites across the Human Genome

    Get PDF
    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations
    corecore