35 research outputs found
Recommended from our members
Complexity within an oil palm monoculture: The effects of habitat variability and rainfall on adult dragonfly (Odonata) communities
Recent expansion of oil palm agriculture has resulted in loss of forest habitat and forest-dependent species. However, large numbers of species – particularly insects – can persist within plantations. This study focuses on Odonata (dragonflies and damselflies): a charismatic indicator taxon, and a potentially valuable pest control agent. We surveyed adult Odonata populations biannually over three years within an industrial oil palm plantation in Sumatra, Indonesia. We assessed the effects of rainfall (including an El Niño Southern Oscillation-associated drought), the role of roadside ditches, and the importance of understory vegetation on Odonata populations. To assess the impacts of vegetation we took advantage of a long-term vegetation management experiment that is part of the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme. We found 41 Odonata species, and communities varied between plantation core and roadside edge microhabitats, and between seasons. Abundance was significantly related to rainfall levels four months before surveys, probably indicating the importance of high water levels in roadside ditches for successful larval development. We found no significant effect of the BEFTA understory vegetation treatments on Odonata abundance, and only limited effects on community composition, suggesting that local understory vegetation structure plays a relatively unimportant role in determining communities. Our findings highlight that there are large numbers of Odonata species present within oil palm plantations, and suggest that their abundance could potentially be increased by maintaining or establishing waterbodies. As Odonata are predators, this could bring pest control benefits, in addition to enhancing biodiversity within intensive agricultural landscapes.This work was funded by The Isaac Newton Trust Cambridge, Golden Agri Resources, and the Natural Environment Research Council [grant number NE/P00458X/1]
Recommended from our members
Resilience of ecological functions to drought in an oil palm agroecosystem
Abstract
Oil palm is a major habitat in the tropics. It is highly productive and contributes substantially to the economies of producing countries, but its expansion has caused widespread deforestation, with negative consequences for biodiversity. Such biodiversity losses may have substantial impacts on ecosystem functions within oil palm and resilience of functions to changing rainfall patterns, with impacts on yield. However, although the direct effects of water deficit on yield have been studied, little work has investigated ecosystem processes within plantations or the resilience of functions to changing rainfall. We conducted ecosystem function experiments within mature oil palm at the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme site in Sumatra, Indonesia. We measured rates of leaf litter decomposition, seed removal, mealworm predation, and herbivory at multiple time points spanning the 2015–2016 El Niño - Southern Oscillation (ENSO) event that caused widespread drought within Southeast Asia. We found that mealworm predation, seed removal, and decomposition rates were high, whilst herbivory levels were low, indicating a healthy ecosystem with high levels of pest control and organic matter breakdown. Exclusion tests showed that the presence of invertebrates was associated with higher levels of seed removal and decomposition and the presence of vertebrates with higher predation. All functions were relatively robust to changes in rainfall. Yet, whilst seed removal and herbivory did not alter with rainfall, decomposition and predation showed more complex effects, with levels of both processes increasing with current rainfall levels when rainfall in preceding time periods was low. This suggests that both processes are resilient to change and able to recover following drought. Our results indicate that the ecosystem processes measured within oil palm plantations are healthy and resilient to changing rainfall patterns. This is hopeful and suggests that the crop may be fairly robust to future changes in precipitation.Isaac Newton Trust Cambridge
Sinar Mas Agro Resources and Technology Research Institut
Recommended from our members
Managing Oil Palm Plantations More Sustainably: Large-Scale Experiments Within the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme
Conversion of tropical forest to agriculture results in reduced habitat heterogeneity, and associated declines in biodiversity and ecosystem functions. Management strategies to increase biodiversity in agricultural landscapes have therefore often focused on increasing habitat complexity; however, the large-scale, long-term ecological experiments that are needed to test the effects of these strategies are rare in tropical systems. Oil palm (Elaeis guineensis Jacq.)—one of the most widespread and important tropical crops—offers substantial potential for developing wildlife-friendly management strategies because of its long rotation cycles and tree-like structure. Although there is awareness of the need to increase sustainability, practical options for how best to manage oil palm plantations, for benefits to both the environment and crop productivity, have received little research attention.
In this paper we introduce the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme: a long-term research collaboration between academia and industry in Sumatra, Indonesia. The BEFTA Programme aims to better understand the oil palm agroecosystem and test sustainability strategies. We hypothesise that adjustments to oil palm management could increase structural complexity, stabilize microclimate, and reduce reliance on chemical inputs, thereby helping to improve levels of biodiversity and ecosystem functions. The Programme has established four major components: (1) assessing variability within the plantation under business-as-usual conditions; (2) the BEFTA Understory Vegetation Project, which tests the effects of varying herbicide regimes; (3) the Riparian Ecosystem Restoration in Tropical Agriculture (RERTA) Project, which tests strategies for restoring riparian habitat; and (4) support for additional collaborative projects within the Programme landscape. Across all projects, we are measuring environmental conditions, biodiversity, and ecosystem functions. We also measure oil palm yield and production costs, in order to assess whether suggested sustainability strategies are feasible from an agronomic perspective.
Early results show that oil palm plantation habitat is more variable than might be expected from a monoculture crop, and that everyday vegetation management decisions have significant impacts on habitat structure. The BEFTA Programme highlights the value of large-scale collaborative projects for understanding tropical agricultural systems, and offers a highly valuable experimental set-up for improving our understanding of practices to manage oil palm more sustainably.This work was funded by The Isaac Newton Trust Cambridge, Golden Agri Resources, ICOPE (the International Conference on Oil Palm and the Environment), and the Natural Environment Research Council [grant number NE/P00458X/1]
Habitat quality, configuration and context effects on roe deer fecundity across a forested landscape mosaic
Effective landscape-scale management of source-sink deer populations will be strengthened by understanding whether local variation in habitat quality drives heterogeneity in productivity. We related female roe deer Capreolus capreolus fecundity and body mass to habitat composition and landscape context, separately for adults and yearlings, using multi-model inference (MMI) applied to a large sample of individuals (yearlings: fecundity=202, body mass=395; adults: fecundity=908, body mass=1669) culled during 2002-2015 from an extensive (195 km2) heterogeneous forest landscape. Adults were heavier (inter-quartile, IQ, effect size=+0.5kg) when culled in buffers comprising more arable lands while contrary to our prediction no effects on body mass of grassland, young forest or access to vegetation on calcareous soil were found. Heavier adults were more fertile (IQ effect size, +12% probability of having two embryos instead of one or zero). Counter-intuitively, adults with greater access to arable lands were less fecund (IQ effect of arable: -7% probability of having two embryos, instead of one or zero), and even accounting for greater body mass of adults with access to arable, their modelled fecundity was similar to or lower than that of adults in the forest interior. In contrast, effects of grassland, young forest and calcareous soil did not receive support. Yearling body mass had an effect on fecundity twice that found in adults (+23% probability of having one additional embryo), but yearling body mass and fecundity were not affected by any candidate habitat or landscape variables. Effect of arable lands on body mass and fecundity were small, with little variance explained (Coefficient of Variation of predicted fecundity across forest sub-regions=0.03 for adults). More variance in fecundity was attributed to other differences between forest management sub-regions (modelled as random effects), suggesting other factors might be important. When analysing source-sink population dynamics to support management, an average value of fecundity can be appropriate across a heterogeneous forest landscape
The dispersal of vascular plants in a forest mosaic by a guild of mammalian herbivores
Endozochorous seed dispersal by herbivores can affect plant spatial dynamics and macroecological patterns. We have investigated the number and species composition of viable seeds deposited in faeces of a full guild of macroherbivores (four deer and two lagomorph species) in a forest in eastern Britain. One hundred and one plant species germinated from faecal pellet material, 85 of which were among the 247 vascular plant species recorded in the forest. However, three species – Chenopodium album, Urtica dioica and Agrostis stolonifera – comprised 56% of the seedlings recorded. Of the species recorded in faecal samples, 36% had no recognised dispersal mechanism, while very few (7%) were adapted to endozoochorous dispersal (fleshy fruit or nut). The number of species dispersed by the herbivores was ranked Cervus elaphus and Dama dama (96) > Capreolus capreolus (40) > Muntiacus reevesi (31) > Oryctolagus cuniculus (21) > Lepus europaeus (19), with the other taxa dispersing subsets of those dispersed by C. elpahus and D. dama. The invasive M. reevesi deposited the fewest seeds per gram of faecal pellet material (0.4 g−1) and hence fewer seeds per unit area than other deer species despite their numerical dominance, while C. elaphus/D. dama deposited the most (0.43 seeds m−2 year−1). Due to differences in faecal seed density among habitats combined with the ranging behaviour of animals, more seeds were deposited in younger stands, enhancing the potential contribution of macroherbivores to population persistence by dispersal and colonisation in a successional mosaic