75 research outputs found

    Claudin 7 expression and localization in the normal murine mammary gland and murine mammary tumors

    Get PDF
    INTRODUCTION: Claudins, membrane-associated tetraspanin proteins, are normally associated with the tight junctions of epithelial cells where they confer a variety of permeability properties to the transepithelial barrier. One member of this family, claudin 7, has been shown to be expressed in the human mammary epithelium and some breast tumors. To set the stage for functional experiments on this molecule, we examined the developmental expression and localization of claudin 7 in the murine mammary epithelium and in a selection of murine mammary tumors. METHOD: We used real-time polymerase chain reaction, in situ mRNA localization, and immunohistochemistry (IHC) to examine the expression and localization of claudin 7. Frozen sections were examined by digital confocal microscopy for colocalization with the tight-junction protein ZO1. RESULTS: Claudin 7 was expressed constitutively in the mammary epithelium at all developmental stages, and the ratio of its mRNA to that of keratin 19 was nearly constant through development. By IHC, claudin 7 was located in the basolateral part of the cell where it seemed to be localized to discrete vesicles. Scant colocalization with the tight-junction scaffolding protein ZO1 was observed. Similar results were obtained from IHC of the airway epithelium and some renal tubules; however, claudin 7 did partly colocalize with ZO1 in EPH4 cells, a normal murine mammary cell line, and in the epididymis. The molecule was localized in the cytoplasm of MMTV-neu and the transplantable murine tumor cell lines TM4, TM10, and TM40A, in which its ratio to cytokeratin was higher than in the normal mammary epithelium. CONCLUSION: Claudin 7 is expressed constitutively in the mammary epithelium at approximately equal levels throughout development as well as in the murine tumors examined. Although it is capable of localizing to tight junctions, in the epithelia of mammary gland, airway, and kidney it is mostly or entirely confined to punctate cytoplasmic structures, often near the basolateral surfaces of the cells and possibly associated with basolateral membranes. These observations suggest that claudin 7 might be involved in vesicle trafficking to the basolateral membrane, possibly stabilizing cytoplasmic vesicles or participating in cell–matrix interactions

    High-risk human papillomavirus infections in breast cancer in Syrian women and their association with Id-1 expression: a tissue microarray study

    Get PDF
    High-risk human papillomaviruses (HPVs) could be important risk factors for breast carcinogenesis and metastasis. Based on this hypothesis, we recently studied the effect of E6/E7 onco-proteins of high-risk HPV type 16 in two non-invasive human breast cancer cell lines, BT20 and MCF7; we reported that E6/E7 converts these cell lines to invasive cells. This is accompanied by an overexpression of Id-1, which is an important regulator of breast metastasis. In this investigation, we examined the presence of high-risk HPVs (16, 18, 31, 33 and 35) and the expression of their E6 onco-protein as well as their correlation with Id-1 gene expression, using polymerase chain reaction (PCR) and tissue microarray (TMA) analysis, respectively, in a cohort of 113 Syrian breast cancer patients. We found that high-risk HPV types 16, 18, 31, 33 and 35 are present in 8.84, 9.73, 7.07, 55.75 and 37.16% of our samples, respectively, which represent invasive breast cancers. Overall, 69 (61.06%) of the 113 samples are HPV positive; among these specimens 24 tissues (34.78%) are coinfected with more than one HPV type. Furthermore, we report that the expression of the E6 onco-protein of these high-risk HPVs is correlated with Id-1 overexpression in the majority of invasive breast cancer tissue samples. Our data suggest that high-risk HPV infections are associated with human breast cancer progression in Syrian women

    Investigation of three new mouse mammary tumor cell lines as models for transforming growth factor (TGF)-β and Neu pathway signaling studies: identification of a novel model for TGF-β-induced epithelial-to-mesenchymal transition

    Get PDF
    INTRODUCTION: This report describes the isolation and characterization of three new murine mammary epithelial cell lines derived from mammary tumors from MMTV (mouse mammary tumor virus)/activated Neu + TβRII-AS (transforming growth factor [TGF]-β type II receptor antisense RNA) bigenic mice (BRI-JM01 and BRI-JM05 cell lines) and MMTV/activated Neu transgenic mice (BRI-JM04 cell line). METHODS: The BRI-JM01, BRI-JM04, and BRI-JM05 cell lines were analyzed for transgene expression, their general growth characteristics, and their sensitivities to several growth factors from the epidermal growth factor (EGF) and TGF-β families (recombinant human EGF, heregulin-β(1 )and TGF-β(1)). The BRI-JM01 cells were observed to undergo a striking morphologic change in response to TGF-β(1), and they were therefore further investigated for their ability to undergo a TGF-β-induced epithelial-to-mesenchymal transition (EMT) using motility assays and immunofluorescence microscopy. RESULTS: We found that two of the three cell lines (BRI-JM04 and BRI-JM05) express the Neu transgene, whereas, unexpectedly, both of the cell lines that were established from MMTV/activated Neu + TβRII-AS bigenic tumors (BRI-JM01 and BRI-JM05) do not express the TβRII-AS transgene. The cuboidal BRI-JM01 cells exhibit a short doubling time and are able to form confluent monolayers. The BRI-JM04 and BRI-JM05 cell lines are morphologically much less uniform, grow at a much slower rate, and do not form confluent monolayers. Only the BRI-JM05 cells can form colonies in soft agar. In contrast, all three cell lines form colonies in Matrigel, although the BRI-JM04 and BRI-JM05 cell lines do so more efficiently than the BRI-JM01 cell line. All three cell lines express the cell surface marker E-cadherin, confirming their epithelial character. Proliferation assays showed that the three cell lines respond differently to recombinant human EGF and heregulin-β(1), and that all are growth inhibited by TGF-β(1), but that only the BRI-JM01 cell line undergoes an EMT and exhibits increased motility upon TGF-β(1 )treatment. CONCLUSION: We suggest that the BRI-JM04 and BRI-JM05 cell lines can be used to investigate Neu oncogene driven mammary tumorigenesis, whereas the BRI-JM01 cell line will be useful for studying TGF-β(1)-induced EMT

    Description of familial keloids in five pedigrees: evidence for autosomal dominant inheritance and phenotypic heterogeneity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Familial keloids have been reported, having either autosomal dominant or autosomal recessive inheritance. We wished to determine the inheritance pattern and phenotype of keloids among multigenerational families, as a prelude to a positional mapping strategy to identify candidate genes.</p> <p>Methods</p> <p>We studied three African American families, one Afro-Caribbean family and one Asian-American family. Phenotyping including assessing all patients for the presence, distribution, and appearance of keloids, together with the timing of keloid onset and provocative factors. The clinical trial was registered at clinicaltrials.gov (NCT 00005802).</p> <p>Results</p> <p>Age of keloid onset varied considerably within families, but commonly occurred by the second decade. The fraction of affected individuals was 38%, 45%, 62%, 67% and 73% among the five families respectively. Keloid severity and morphology differed within and between families. A novel finding is that certain families manifest keloids in distinct locations, with one family showing an excess of extremity keloids and two families showing an excess of axilla-groin keloids.</p> <p>Conclusion</p> <p>Familial keloids appear to most commonly manifest autosomal dominant or semidominant inheritance, and there may be familial patterns of keloid distribution.</p

    A non-tight junction function of claudin-7—Interaction with integrin signaling in suppressing lung cancer cell proliferation and detachment

    Get PDF
    Background Claudins are a family of tight junction (TJ) membrane proteins involved in a broad spectrum of human diseases including cancer. Claudin-7 is a unique TJ membrane protein in that it has a strong basolateral membrane distribution in epithelial cells and in tissues. Therefore, this study aims to investigate the functional significance of this non-TJ localization of claudin-7 in human lung cancer cells. Methods Claudin-7 expression was suppressed or deleted by lentivirus shRNA or by targeted-gene deletion. Cell cycle analysis and antibody blocking methods were employed to assay cell proliferation and cell attachment, respectively. Electron microscopy and transepthelial electrical resistance measurement were performed to examine the TJ ultrastructure and barrier function. Co-immunolocalization and co-immunoprecipitation was used to study claudin-7 interaction with integrin β1. Tumor growth in vivo were analyzed using athymic nude mice. Results Claudin-7 co-localizes and forms a stable complex with integrin β1. Both suppressing claudin-7 expression by lentivirus shRNA in human lung cancer cells (KD cells) and deletion of claudin-7 in mouse lungs lead to the reduction in integrin β1 and phospho-FAK levels. Suppressing claudin-7 expression increases cell growth and cell cycle progression. More significantly, claudin-7 KD cells have severe defects in cell-matrix interactions and adhere poorly to culture plates with a remarkably reduced integrin β1 expression. When cultured on uncoated glass coverslips, claudin-7 KD cells grow on top of each other and form spheroids while the control cells adhere well and grow as a monolayer. Reintroducing claudin-7 reduces cell proliferation, upregulates integrin β1 expression and increases cell-matrix adhesion. Integrin β1 transfection partially rescues the cell attachment defect. When inoculated into nude mice, claudin-7 KD cells produced significantly larger tumors than control cells. Conclusion In this study, we identified a previously unrecognized function of claudin-7 in regulating cell proliferation and maintaining epithelial cell attachment through engaging integrin β1

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    The level of claudin-7 is reduced as an early event in colorectal carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Compromised epithelial barriers are found in dysplastic tissue of the gastrointestinal tract. Claudins are transmembrane proteins important for tight junctions. Claudins regulate the paracellular transport and are crucial for maintaining a functional epithelial barrier. Down-regulation of the oncogenic serine protease, matriptase, induces leakiness in epithelial barriers both <it>in vivo </it>and <it>in vitro</it>. We found in an <it>in-silico </it>search tight co-regulation between <it>matriptase </it>and <it>claudin-7 </it>expression. We have previously shown that the <it>matriptase </it>expression level decreases during colorectal carcinogenesis. In the present study we investigated whether <it>claudin-7 </it>expression is likewise decreased during colorectal carcinogenesis, thereby causing or contributing to the compromised epithelial leakiness of dysplastic tissue.</p> <p>Methods</p> <p>The mRNA level of <it>claudin-7 </it>(CLDN7) was determined in samples from 18 healthy individuals, 100 individuals with dysplasia and 121 colorectal cancer patients using quantitative real time RT-PCR. In addition, immunohistochemical stainings were performed on colorectal adenomas and carcinomas, to confirm the mRNA findings.</p> <p>Results</p> <p>A 2.7-fold reduction in the <it>claudin-7 </it>mRNA level was found when comparing the biopsies from healthy individuals with the biopsies of carcinomas (p < 0.001). Reductions in the <it>claudin-7 </it>mRNA levels were also detected in mild/moderate dysplasia (p < 0.001), severe dysplasia (p < 0.01) and carcinomas (p < 0.01), compared to a control sample from the same individual. The decrease at mRNA level was confirmed at the protein level by immunohistochemical stainings.</p> <p>Conclusions</p> <p>Our results show that the <it>claudin-7 </it>mRNA level is decreased already as an early event in colorectal carcinogenesis, probably contributing to the compromised epithelial barrier in adenomas.</p

    Genomic profiling identifies common HPV-associated chromosomal alterations in squamous cell carcinomas of cervix and head and neck

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well known that a persistent infection with high-risk human papillomavirus (hrHPV) is causally involved in the development of squamous cell carcinomas of the uterine cervix (CxSCCs) and a subset of SCCs of the head and neck (HNSCCs). The latter differ from hrHPV-negative HNSCCs at the clinical and molecular level.</p> <p>Methods</p> <p>To determine whether hrHPV-associated SCCs arising from different organs have specific chromosomal alterations in common, we compared genome-wide chromosomal profiles of 10 CxSCCs (all hrHPV-positive) with 12 hrHPV-positive HNSCCs and 30 hrHPV-negative HNSCCs. Potential organ-specific alterations and alterations shared by SCCs in general were investigated as well.</p> <p>Results</p> <p>Unsupervised hierarchical clustering resulted in one mainly hrHPV-positive and one mainly hrHPV-negative cluster. Interestingly, loss at 13q and gain at 20q were frequent in HPV-positive carcinomas of both origins, but uncommon in hrHPV-negative HNSCCs, indicating that these alterations are associated with hrHPV-mediated carcinogenesis. Within the group of hrHPV-positive carcinomas, HNSCCs more frequently showed gains of multiple regions at 8q whereas CxSCCs more often showed loss at 17p. Finally, gains at 3q24-29 and losses at 11q22.3-25 were frequent (>50%) in all sample groups.</p> <p>Conclusion</p> <p>In this study hrHPV-specific, organ-specific, and pan-SCC chromosomal alterations were identified. The existence of hrHPV-specific alterations in SCCs of different anatomical origin, suggests that these alterations are crucial for hrHPV-mediated carcinogenesis.</p

    Claudin-7 Is Frequently Overexpressed in Ovarian Cancer and Promotes Invasion

    Get PDF
    Background: Claudins are tight junction proteins that are involved in tight junction formation and function. Previous studies have shown that claudin-7 is frequently upregulated in epithelial ovarian cancer (EOC) along with claudin-3 and claudin-4. Here, we investigate in detail the expression patterns of claudin-7, as well as its possible functions in EOC. Methodology/Principal Findings: A total of 95 ovarian tissue samples (7 normal ovarian tissues, 65 serous carcinomas, 11 clear cell carcinomas, 8 endometrioid carcinomas and 4 mucinous carcinomas) were studied for claudin-7 expression. In real-time RT-PCR analysis, the gene for claudin-7, CLDN7, was found to be upregulated in all the tumor tissue samples studied. Similarly, immunohistochemical analysis and western blotting showed that claudin-7 protein was significantly overexpressed in the vast majority of EOCs. Small interfering RNA-mediated knockdown of claudin-7 in ovarian cancer cells led to significant changes in gene expression as measured by microarrays and validated by RT-PCR and immunoblotting. Analyses of the genes differentially expressed revealed that the genes altered in response to claudin-7 knockdown were associated with pathways implicated in various molecular and cellular functions such as cell cycle, cellular growth and proliferation, cell death, development, and cell movement. Through functional experiments in vitro, we found that both migration and invasion were altered in cells where CLDN7 had been knocked down or overexpressed. Interestingly, claudin-7 expression was associated with a net increase in invasion, but also with a decrease in migration
    corecore