146 research outputs found

    Cytomegalovirus microRNAs Facilitate Persistent Virus Infection in Salivary Glands

    Get PDF
    Micro (mi)RNAs are small non-coding RNAs that regulate the expression of their targets' messenger RNAs through both translational inhibition and regulation of target RNA stability. Recently, a number of viruses, particularly of the herpesvirus family, have been shown to express their own miRNAs to control both viral and cellular transcripts. Although some targets of viral miRNAs are known, their function in a physiologically relevant infection remains to be elucidated. As such, no in vivo phenotype of a viral miRNA knock-out mutant has been described so far. Here, we report on the first functional phenotype of a miRNA knock-out virus in vivo. During subacute infection of a mutant mouse cytomegalovirus lacking two viral miRNAs, virus production is selectively reduced in salivary glands, an organ essential for virus persistence and horizontal transmission. This phenotype depends on several parameters including viral load and mouse genetic background, and is abolished by combined but not single depletion of natural killer (NK) and CD4+ T cells. Together, our results point towards a miRNA-based immunoevasion mechanism important for long-term virus persistence

    Verification of genes differentially expressed in neuroblastoma tumours: a study of potential tumour suppressor genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most striking features of the childhood malignancy neuroblastoma (NB) is its clinical heterogeneity. Although there is a great need for better clinical and biological markers to distinguish between tumours with different severity and to improve treatment, no clear-cut prognostic factors have been found. Also, no major NB tumour suppressor genes have been identified.</p> <p>Methods</p> <p>In this study we performed expression analysis by quantitative real-time PCR (QPCR) on primary NB tumours divided into two groups, of favourable and unfavourable outcome respectively. Candidate genes were selected on basis of lower expression in unfavourable tumour types compared to favourables in our microarray expression analysis. Selected genes were studied in two steps: (1) using TaqMan Low Density Arrays (TLDA) targeting 89 genes on a set of 12 NB tumour samples, and (2) 12 genes were selected from the TLDA analysis for verification using individual TaqMan assays in a new set of 13 NB tumour samples.</p> <p>Results</p> <p>By TLDA analysis, 81 out of 87 genes were found to be significantly differentially expressed between groups, of which 14 have previously been reported as having an altered gene expression in NB. In the second verification round, seven out of 12 transcripts showed significantly lower expression in unfavourable NB tumours, <it>ATBF1</it>, <it>CACNA2D3</it>, <it>CNTNAP2</it>, <it>FUSIP1</it>, <it>GNB1</it>, <it>SLC35E2</it>, and <it>TFAP2B</it>. The gene that showed the highest fold change in the TLDA analysis, <it>POU4F2</it>, was investigated for epigenetic changes (CpG methylation) and mutations in order to explore the cause of the differential expression. Moreover, the fragile site gene <it>CNTNAP2 </it>that showed the largest fold change in verification group 2 was investigated for structural aberrations by copy number analysis. However, the analyses of <it>POU4F2 </it>and <it>CNTNAP2 </it>showed no genetic alterations that could explain a lower expression in unfavourable NB tumours.</p> <p>Conclusion</p> <p>Through two steps of verification, seven transcripts were found to significantly discriminate between favourable and unfavourable NB tumours. Four of the transcripts, <it>CACNA2D3</it>, <it>GNB1</it>, <it>SLC35E2</it>, and <it>TFAP2B</it>, have been observed in previous microarray studies, and are in this study independently verified. Our results suggest these transcripts to be markers of malignancy, which could have a potential usefulness in the clinic.</p

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Civil conflict and sleeping sickness in Africa in general and Uganda in particular

    Get PDF
    Conflict and war have long been recognized as determinants of infectious disease risk. Re-emergence of epidemic sleeping sickness in sub-Saharan Africa since the 1970s has coincided with extensive civil conflict in affected regions. Sleeping sickness incidence has placed increasing pressure on the health resources of countries already burdened by malaria, HIV/AIDS, and tuberculosis. In areas of Sudan, the Democratic Republic of the Congo, and Angola, sleeping sickness occurs in epidemic proportions, and is the first or second greatest cause of mortality in some areas, ahead of HIV/AIDS. In Uganda, there is evidence of increasing spread and establishment of new foci in central districts. Conflict is an important determinant of sleeping sickness outbreaks, and has contributed to disease resurgence. This paper presents a review and characterization of the processes by which conflict has contributed to the occurrence of sleeping sickness in Africa. Conflict contributes to disease risk by affecting the transmission potential of sleeping sickness via economic impacts, degradation of health systems and services, internal displacement of populations, regional insecurity, and reduced access for humanitarian support. Particular focus is given to the case of sleeping sickness in south-eastern Uganda, where incidence increase is expected to continue. Disease intervention is constrained in regions with high insecurity; in these areas, political stabilization, localized deployment of health resources, increased administrative integration and national capacity are required to mitigate incidence. Conflict-related variables should be explicitly integrated into risk mapping and prioritization of targeted sleeping sickness research and mitigation initiatives

    HIV-Induced Type I Interferon and Tryptophan Catabolism Drive T Cell Dysfunction Despite Phenotypic Activation

    Get PDF
    Infection by the human immunodeficiency virus (HIV) is characterized by functional impairment and chronic activation of T lymphocytes, the causes of which are largely unexplained. We cultured peripheral blood mononuclear cells (PBMC) from HIV-uninfected donors in the presence or absence of HIV. HIV exposure increased expression of the activation markers CD69 and CD38 on CD4 and CD8 T cells. IFN-α/β, produced by HIV-activated plasmacytoid dendritic cells (pDC), was necessary and sufficient for CD69 and CD38 upregulation, as the HIV-induced effect was inhibited by blockade of IFN-α/β receptor and mimicked by recombinant IFN-α/β. T cells from HIV-exposed PBMC showed reduced proliferation after T cell receptor stimulation, partially prevented by 1-methyl tryptophan, a competitive inhibitor of the immunesuppressive enzyme indoleamine (2,3)-dioxygenase (IDO), expressed by HIV-activated pDC. HIV-induced IDO inhibited CD4 T cell proliferation by cell cycle arrest in G1/S, and prevented CD8 T cell from entering the cell cycle by downmodulating the costimulatory receptor CD28. Finally, the expression of CHOP, a marker of the stress response activated by IDO, was upregulated by HIV in T cells in vitro and is increased in T cells from HIV-infected patients. Our data provide an in vitro model for HIV-induced T cell dysregulation and support the hypothesis that activation of pDC concomitantly contribute to phenotypic T cell activation and inhibition of T cell proliferative capacity during HIV infection

    Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration

    Get PDF
    Varicella zoster virus (VZV) is a highly prevalent human pathogen that establishes latency in neurons of the peripheral nervous system. Primary infection causes varicella whereas reactivation results in zoster, which is often followed by chronic pain in adults. Following infection of epithelial cells in the respiratory tract, VZV spreads within the host by hijacking leukocytes, including T cells, in the tonsils and other regional lymph nodes, and modifying their activity. In spite of its importance in pathogenesis, the mechanism of dissemination remains poorly understood. Here we addressed the influence of VZV on leukocyte migration and found that the purified recombinant soluble ectodomain of VZV glycoprotein C (rSgC) binds chemokines with high affinity. Functional experiments show that VZV rSgC potentiates chemokine activity, enhancing the migration of monocyte and T cell lines and, most importantly, human tonsillar leukocytes at low chemokine concentrations. Binding and potentiation of chemokine activity occurs through the C-terminal part of gC ectodomain, containing predicted immunoglobulin-like domains. The mechanism of action of VZV rSgC requires interaction with the chemokine and signalling through the chemokine receptor. Finally, we show that VZV viral particles enhance chemokine-dependent T cell migration and that gC is partially required for this activity. We propose that VZV gC activity facilitates the recruitment and subsequent infection of leukocytes and thereby enhances VZV systemic dissemination in humans

    Postpartum psychiatric disorders

    Get PDF
    Pregnancy is a complex and vulnerable period that presents a number of challenges to women, including the development of postpartum psychiatric disorders (PPDs). These disorders can include postpartum depression and anxiety, which are relatively common, and the rare but more severe postpartum psychosis. In addition, other PPDs can include obsessive–compulsive disorder, post-traumatic stress disorder and eating disorders. The aetiology of PPDs is a complex interaction of psychological, social and biological factors, in addition to genetic and environmental factors. The goals of treating postpartum mental illness are reducing maternal symptoms and supporting maternal–child and family functioning. Women and their families should receive psychoeducation about the illness, including evidence-based discussions about the risks and benefits of each treatment option. Developing effective strategies in global settings that allow the delivery of targeted therapies to women with different clinical phenotypes and severities of PPDs is essential
    corecore