23 research outputs found

    Development of nano-objects surface biofunctionalization strategies for biological applications

    No full text
    Cette étude porte sur le développement de nanoparticules pour différentes applicationsbiologiques. Trois systèmes de nanoparticules ont été mis au point : des clusters de nanoparticulesmagnétiques pour l’extraction par magnétophorèse d’objets biologiques, des agents de contrastemultimodaux (IRM, fluorescence dans le proche infrarouge) pour le diagnostic de l’athérosclérose etdes nanoparticules de silice fluorescentes doublement marquées pour la détection de tumeurs in vivo.Au cours de cette étude, une stratégie de greffage de surface de silice par des macromolécules depoly(oxyde d’éthylène) (PEG) permettant d’atteindre de hautes densités de greffage. Cette PEGylationpermet, d’annuler les interactions non spécifiques dans le cadre de l’extraction magnétique rendantainsi ce système plus efficace, et de conférer aux nanoparticules des propriétés de furtivité vis-à-vis dusystème immunitaire dans le cadre du marquage de tumeurs. Le contrôle du nombre de biomoléculesgreffées régiosélectivement sur les nanoparticules (Annexine A5, ou fragments d’anticorps) ainsi quel’étude des interactions biomoléculaires par des techniques de biophysique (SPR, QCM-D) ont permisd’optimiser la propriété de reconnaissance des nano-objets pour leurs cible respective. Enfin, les nanoobjetsont été évalués dans le cadre de leur application.The aim of this study was the design of nanoparticles for three different biologicalapplications: magnetic nanoparticles cluster for magnetic extraction of biological materials,multimodal contrast agents (MRI and near infrared fluorescence imaging) for atherosclerosisdiagnosis, and fluorescent silica nanoparticles with two different dyes for in vitro and in vivo tumorlabeling. One part of the project dealt with the developement of a new grafting method ofpoly(ethylene oxide) macromolecules onto nanoparticle’s silica surfaces (PEGylation) in order toobtain a high grafting densities. The obtained results have shown that this PEGylation reduces the nonspecificprotein adsorption allowing a better extraction and sorting efficiency, and also permitsnanoparticles to escape the surveillance of the immune system for in vivo tumor labeling. Therefore,the biomolecular recognition of the nanoparticles has been optimized by controlling the number ofconjugated biomolecules and by studying this biomolecular recognition using biophysical methods(SPR, QCM-D). Finally, the different nano-objects were evaluated in the context of their respectiveapplication

    Development of nano-objects surface biofunctionalization strategies for biological applications

    No full text
    Cette étude porte sur le développement de nanoparticules pour différentes applicationsbiologiques. Trois systèmes de nanoparticules ont été mis au point : des clusters de nanoparticulesmagnétiques pour l’extraction par magnétophorèse d’objets biologiques, des agents de contrastemultimodaux (IRM, fluorescence dans le proche infrarouge) pour le diagnostic de l’athérosclérose etdes nanoparticules de silice fluorescentes doublement marquées pour la détection de tumeurs in vivo.Au cours de cette étude, une stratégie de greffage de surface de silice par des macromolécules depoly(oxyde d’éthylène) (PEG) permettant d’atteindre de hautes densités de greffage. Cette PEGylationpermet, d’annuler les interactions non spécifiques dans le cadre de l’extraction magnétique rendantainsi ce système plus efficace, et de conférer aux nanoparticules des propriétés de furtivité vis-à-vis dusystème immunitaire dans le cadre du marquage de tumeurs. Le contrôle du nombre de biomoléculesgreffées régiosélectivement sur les nanoparticules (Annexine A5, ou fragments d’anticorps) ainsi quel’étude des interactions biomoléculaires par des techniques de biophysique (SPR, QCM-D) ont permisd’optimiser la propriété de reconnaissance des nano-objets pour leurs cible respective. Enfin, les nanoobjetsont été évalués dans le cadre de leur application.The aim of this study was the design of nanoparticles for three different biologicalapplications: magnetic nanoparticles cluster for magnetic extraction of biological materials,multimodal contrast agents (MRI and near infrared fluorescence imaging) for atherosclerosisdiagnosis, and fluorescent silica nanoparticles with two different dyes for in vitro and in vivo tumorlabeling. One part of the project dealt with the developement of a new grafting method ofpoly(ethylene oxide) macromolecules onto nanoparticle’s silica surfaces (PEGylation) in order toobtain a high grafting densities. The obtained results have shown that this PEGylation reduces the nonspecificprotein adsorption allowing a better extraction and sorting efficiency, and also permitsnanoparticles to escape the surveillance of the immune system for in vivo tumor labeling. Therefore,the biomolecular recognition of the nanoparticles has been optimized by controlling the number ofconjugated biomolecules and by studying this biomolecular recognition using biophysical methods(SPR, QCM-D). Finally, the different nano-objects were evaluated in the context of their respectiveapplication

    Development of nano-objects surface biofunctionalization strategies for biological applications

    No full text
    Cette étude porte sur le développement de nanoparticules pour différentes applicationsbiologiques. Trois systèmes de nanoparticules ont été mis au point : des clusters de nanoparticulesmagnétiques pour l’extraction par magnétophorèse d’objets biologiques, des agents de contrastemultimodaux (IRM, fluorescence dans le proche infrarouge) pour le diagnostic de l’athérosclérose etdes nanoparticules de silice fluorescentes doublement marquées pour la détection de tumeurs in vivo.Au cours de cette étude, une stratégie de greffage de surface de silice par des macromolécules depoly(oxyde d’éthylène) (PEG) permettant d’atteindre de hautes densités de greffage. Cette PEGylationpermet, d’annuler les interactions non spécifiques dans le cadre de l’extraction magnétique rendantainsi ce système plus efficace, et de conférer aux nanoparticules des propriétés de furtivité vis-à-vis dusystème immunitaire dans le cadre du marquage de tumeurs. Le contrôle du nombre de biomoléculesgreffées régiosélectivement sur les nanoparticules (Annexine A5, ou fragments d’anticorps) ainsi quel’étude des interactions biomoléculaires par des techniques de biophysique (SPR, QCM-D) ont permisd’optimiser la propriété de reconnaissance des nano-objets pour leurs cible respective. Enfin, les nanoobjetsont été évalués dans le cadre de leur application.The aim of this study was the design of nanoparticles for three different biologicalapplications: magnetic nanoparticles cluster for magnetic extraction of biological materials,multimodal contrast agents (MRI and near infrared fluorescence imaging) for atherosclerosisdiagnosis, and fluorescent silica nanoparticles with two different dyes for in vitro and in vivo tumorlabeling. One part of the project dealt with the developement of a new grafting method ofpoly(ethylene oxide) macromolecules onto nanoparticle’s silica surfaces (PEGylation) in order toobtain a high grafting densities. The obtained results have shown that this PEGylation reduces the nonspecificprotein adsorption allowing a better extraction and sorting efficiency, and also permitsnanoparticles to escape the surveillance of the immune system for in vivo tumor labeling. Therefore,the biomolecular recognition of the nanoparticles has been optimized by controlling the number ofconjugated biomolecules and by studying this biomolecular recognition using biophysical methods(SPR, QCM-D). Finally, the different nano-objects were evaluated in the context of their respectiveapplication

    Développement de stratégies de biofonctionnalisation de surface de nano-objets pour des applications biologiques

    No full text
    The aim of this study was the design of nanoparticles for three different biologicalapplications: magnetic nanoparticles cluster for magnetic extraction of biological materials,multimodal contrast agents (MRI and near infrared fluorescence imaging) for atherosclerosisdiagnosis, and fluorescent silica nanoparticles with two different dyes for in vitro and in vivo tumorlabeling. One part of the project dealt with the developement of a new grafting method ofpoly(ethylene oxide) macromolecules onto nanoparticle’s silica surfaces (PEGylation) in order toobtain a high grafting densities. The obtained results have shown that this PEGylation reduces the nonspecificprotein adsorption allowing a better extraction and sorting efficiency, and also permitsnanoparticles to escape the surveillance of the immune system for in vivo tumor labeling. Therefore,the biomolecular recognition of the nanoparticles has been optimized by controlling the number ofconjugated biomolecules and by studying this biomolecular recognition using biophysical methods(SPR, QCM-D). Finally, the different nano-objects were evaluated in the context of their respectiveapplication.Cette étude porte sur le développement de nanoparticules pour différentes applicationsbiologiques. Trois systèmes de nanoparticules ont été mis au point : des clusters de nanoparticulesmagnétiques pour l’extraction par magnétophorèse d’objets biologiques, des agents de contrastemultimodaux (IRM, fluorescence dans le proche infrarouge) pour le diagnostic de l’athérosclérose etdes nanoparticules de silice fluorescentes doublement marquées pour la détection de tumeurs in vivo.Au cours de cette étude, une stratégie de greffage de surface de silice par des macromolécules depoly(oxyde d’éthylène) (PEG) permettant d’atteindre de hautes densités de greffage. Cette PEGylationpermet, d’annuler les interactions non spécifiques dans le cadre de l’extraction magnétique rendantainsi ce système plus efficace, et de conférer aux nanoparticules des propriétés de furtivité vis-à-vis dusystème immunitaire dans le cadre du marquage de tumeurs. Le contrôle du nombre de biomoléculesgreffées régiosélectivement sur les nanoparticules (Annexine A5, ou fragments d’anticorps) ainsi quel’étude des interactions biomoléculaires par des techniques de biophysique (SPR, QCM-D) ont permisd’optimiser la propriété de reconnaissance des nano-objets pour leurs cible respective. Enfin, les nanoobjetsont été évalués dans le cadre de leur application

    Main challenges about surface biofunctionalization for the in vivo targeting of magnetic particles

    No full text
    Magnetic nanoparticles have attracted attention in nanomedicine owing to their potentialities offered in bioimaging, drug release, magnetic hyperthermia and diagnosis devices. The conjugation of selected affinity ligands on their surface enables the specific targeting of overexpressed receptors in diseased tissues or cells and can increase for instance the therapeutic index of drugs used in chemotherapy or the diagnosis value of images in magnetic resonance imaging. The bioconjugation appears as the ultimate step in the design of targeted magnetic nanoparticles (MNPs) and is therefore critical since it can determinate their final in vivo biodistribution. This chapter summarizes the main bioconjugation procedures, followed by the description of the interface between MNP and the biological environment. In the last part, the critical parameters affecting the targeting efficiency and the MNP biodistribution are presented, as well as preassessment methods

    Main challenges about surface biofunctionalization for the in vivo targeting of magnetic particles

    No full text
    Magnetic nanoparticles have attracted attention in nanomedicine owing to their potentialities offered in bioimaging, drug release, magnetic hyperthermia and diagnosis devices. The conjugation of selected affinity ligands on their surface enables the specific targeting of overexpressed receptors in diseased tissues or cells and can increase for instance the therapeutic index of drugs used in chemotherapy or the diagnosis value of images in magnetic resonance imaging. The bioconjugation appears as the ultimate step in the design of targeted magnetic nanoparticles (MNPs) and is therefore critical since it can determinate their final in vivo biodistribution. This chapter summarizes the main bioconjugation procedures, followed by the description of the interface between MNP and the biological environment. In the last part, the critical parameters affecting the targeting efficiency and the MNP biodistribution are presented, as well as preassessment methods

    Quaternary ammonium groups exposed at the surface of silica nanoparticles suitable for DNA complexation in the presence of cationic lipids.

    No full text
    The production of silica nanoparticles (NPs) exposing quaternary ammonium groups (NPQ(+)) has been achieved using an optimized chemical surface functionalization protocol. The procedures of surface modification and quaternization of amino groups were validated by diffuse reflectance infrared Fourier transform (DRIFT) and (1)H NMR spectroscopies. Compared to nonquaternized aminated NP, the colloidal stability of NPQ(+) was improved for various pH and salt conditions as assessed by ζ potential and light scattering measurements. In the context of their use for nucleic acid delivery, DNA efficiently bound to NPQ(+) analyzed by cosedimentation assays for a large pH range and various NaCl concentrations and exhibited a better efficacy at basic pH than nonquaternized NP. The study of NPQ(+)/DNA/cationic lipids ternary complexes was carried out with 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and analyzed by cryo-electron microscopy (cryo-EM). Cryo-EM images showed ternary assemblies where condensed DNA strands are sandwiched between the NPQ(+) surface and the cationic lipid bilayer. Because of an unusual electrostatic colloidal stability of NPQ(+) and a high propensity to bind DNA molecules particularly at high salt concentrations, a novel type of ternary assembly has been formed that might impact the delivery properties of these complexes including their stability in biological environment

    Colloidal chemistry with patchy silica nanoparticles

    No full text
    We report a new route to synthesize clusters, or so-called colloidal molecules (CMs), which mimic the symmetry of molecular structures made of one central atom. We couple site-specifically functionalized patchy nanoparticles, i.e., valence-endowed colloidal atoms (CAs), with complementary nanospheres through amide bonds. By analogy with the Gillespie formalism, we show that AX4, AX3E1 and AX2E2 CMs can be obtained from tetravalent sp3-like CAs when the relative amount of both building units is varied in a controlled manner. We obtain AX2 CMs from divalent sp-like CAs. We also show that it is possible to covalently attach two different types of satellites to the same central patchy nanoparticle to create more complex CMs, opening the way to the fabrication of new multifunctional nanostructures with well-controlled shape and composition.Dilater le système atomique conventionnel à l'échelle colloïdale grâce à des particules préprogrammées pour une valence donnéeInitiative d'excellence de l'Université de Bordeau

    Impact of surface grafting density of PEG macromolecules on dually fluorescent silica nanoparticles used for the in vivo imaging of subcutaneous tumors

    No full text
    Background: In the context of systematically administered nanomedicines, the physicochemistry of NP surfaces must be controlled as a prerequisite to improve blood circulation time, and passive and active targeting. In particular, there is a real need to develop NP stealth and labelling for both in vivo and microscopic fluorescence imaging in a mice model.Methods: We have synthesized NIR/red dually fluorescent silica nanoparticles of 19 nm covalently covered by a PEG layer of different grafting density in the brush conformational regime by using a reductive amination reaction. These particles were characterized by TEM, DRIFT, DLS, TGA, ζ potential measurements, UV-vis and fluorescence spectroscopy. Prostate tumors were generated in mice by subcutaneous injection of RM1-CMV-Fluc cells. Tumor growth was monitored by BLI after a D-luciferin injection. Four samples of PEGylated fluorescent NPs were individually intravenously injected into 6 mice (N = 6, total 24 mice). Nanoparticle distribution was investigated using in vivo fluorescence reflectance imaging (FRI) over 48 h and microscopy imaging was employed to localize the NPs within tumors in vitro.Results: Fluorescent NP accumulation, due to the enhanced permeability and retention (EPR) effect, increases gradually as a function of increased PEG surface grafting density with a huge difference observed for the highest density grafting. For the highest grafting density, a blood circulation time of up to 24 h was observed with a strong reduction in uptake by the liver. In vivo experimental results suggest that the biodistribution of NPs is very sensitive to slight variations in surface grafting density when the NPs present a high curvature radius.Conclusion: This study underlines the need to compensate a high curvature radius with a PEG-saturated NP surface to improve blood circulation and accumulation within tumors through the EPR effect. Dually fluorescent NPs PEGylated to saturation display physical properties useful for assessing the susceptibility of tumors to the EPR effect.Translational Research and Advanced Imaging Laborator

    Towards polymeric nanoparticles with multiple magnetic patches

    No full text
    Fabricating future materials by self-assembly of nano-building blocks programmed to generate specific lattices is among the most challenging goals of nanotechnology and has led to the recent concept of patchy particles. We report here a simple strategy to fabricate polystyrene nanoparticles with several silica patches based on the solvent-induced self-assembly of silica/polystyrene monopods. The latter are obtained with morphological yields as high as 99% by seed-growth emulsion polymerization of styrene in the presence of 100 nm silica seeds previously modified with an optimal surface density of methacryloxymethyl groups. In addition, we fabricate “magnetic” silica seeds by silica encapsulation of preformed maghemite supraparticles. The polystyrene pod, i.e., surface nodule, serves as a sticky point when the monopods are incubated in a bad/good solvent mixture for polystyrene, e.g., ethanol/tetrahydrofuran mixtures. After self-assembly, mixtures of particles with two, three, four silica or magnetic silica patches are mainly obtained. The influence of experimental parameters such as the ethanol/tetrahydrofuran volume ratio, monopod concentration and incubation time is studied. Further developments would consist of obtaining pure batches by centrifugal sorting and optimizing the relative position of the patches in conventional repulsion figures
    corecore