59 research outputs found

    Cellulase recycling in biorefineriesis : is it possible?

    Get PDF
    On a near future, bio-based economy will assume a key role in our lives. Lignocellulosic materials (e.g., agroforestry residues, industrial/solid wastes) represent a cheaper and environmentally friendly option to fossil fuels. Indeed, following suitable processing, they can be metabolized by different microorganisms to produce a wide range of compounds currently obtained by chemical synthesis. However, due to the recalcitrant nature of these materials, they cannot be directly used by microorganisms, the conversion of polysaccharides into simpler sugars being thus required. This conversion, which is usually undertaken enzymatically, represents a significant part on the final cost of the process. This fact has driven intense efforts on the reduction of the enzyme cost following different strategies. Here, we describe the fundamentals of the enzyme recycling technology, more specifically, cellulase recycling. We focus on the main strategies available for the recovery of both the liquid- and solid-bound enzyme fractions and discuss the relevant operational parameters (e.g., composition, temperature, additives, and pH). Although the efforts from the industry and enzyme suppliers are primarily oriented toward the development of enzyme cocktails able to quickly and effectively process biomass, it seems clear by now that enzyme recycling is technically possible.Financial support from FEDER and Fundação para a CiĂȘncia e a Tecnologia (FCT): GlycoCBMs Project PTDC/AGR-FOR/3090/2012–FCOMP-01-0124- FEDER-027948 and Strategic Project PEst-OE/EQB/LA0023/2013, Project BBioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028 Cofunded by the Programa Operacional Regional do Norte (ON.2–O Novo Norte), QREN, FEDER and the PhD grant to DG (SFRH/BD/88623/ 2012) and ACR (SFRH/BD/89547/2012)

    Myceliophthora thermophila M77 utilizes hydrolytic and oxidative mechanisms to deconstruct biomass

    Get PDF
    Biomass is abundant, renewable and useful for biofuel production as well as chemical priming for plastics and composites. Deconstruction of biomass by enzymes is perceived as recalcitrant while an inclusive breakdown mechanism remains to be discovered. Fungi such as Myceliophthora thermophila M77 appear to decompose natural biomass sources quite well. This work reports on this fungus fermentation property while producing cellulolytic enzymes using natural biomass substrates. Little hydrolytic activity was detected, insufficient to explain the large amount of biomass depleted in the process. Furthermore, this work makes a comprehensive account of extracellular proteins and describes how secretomes redirect their qualitative protein content based on the nature and chemistry of the nutritional source. Fungus grown on purified cellulose or on natural biomass produced secretomes constituted by: cellobiohydrolases, cellobiose dehydrogenase, B-1,3 glucanase, B-glucosidases, aldose epimerase, glyoxal oxidase, GH74 xyloglucanase, galactosidase, aldolactonase and polysaccharide monooxygenases. Fungus grown on a mixture of purified hemicellulose fractions (xylans, arabinans and arabinoxylans) produced many enzymes, some of which are listed here: xylosidase, mixed B-1,3(4) glucanase, B-1,3 glucanases, B-glucosidases, B-mannosidase, B-glucosidases, galactosidase, chitinases, polysaccharide lyase, endo B-1,6 galactanase and aldose epimerase. Secretomes produced on natural biomass displayed a comprehensive set of enzymes involved in hydrolysis and oxidation of cellulose, hemicellulose-pectin and lignin. The participation of oxidation reactions coupled to lignin decomposition in the breakdown of natural biomass may explain the discrepancy observed for cellulose decomposition in relation to natural biomass fermentation experiments.Peer reviewedMicrobiology and Molecular GeneticsBiochemistry and Microbiolog
    • 

    corecore