1,579 research outputs found
Decay of quantised vorticity by sound emission
It is thought that in a quantum fluid sound generation is the ultimate sink
of turbulent kinetic energy in the absence of any other dissipation mechanism
near absolute zero. We show that a suitably trapped Bose-Einstein condensate
provides a model system to study the sound emitted by accelerating vortices in
a controlled way.Comment: 6 pages, 3 figure
The views of five participating undergraduate students of the Student Associates Scheme in England
This paper reports findings from a study which explored undergraduate perceptions of the Student Associates Scheme in England (SAS). The scheme was established by the Training and Development Agency for Schools in an attempt to increase the number of graduates entering the teaching profession, particularly in shortage subjects such as the physical sciences and mathematics. The scheme places undergraduate students on short-term placements in secondary schools throughout England to provide them with experiences that may encourage them to consider teaching as a career option. Findings show that the SAS school placements were a positive experience for the students participating in this study. However, a question emerged as to whether or not the scheme is targeting students who have yet to decide upon teaching as a career or just reinforcing the existing aspirations of students who have already decided to teach. As the scheme is attempting to increase the number of teachers entering the profession this question has important implications for this study and further work which will focus on undergraduates who think that their career ambitions would not be fulfilled by teaching
El valor de la conservación forestal para la protección de la calidad del agua
Forests protect water quality by reducing soil erosion, sedimentation, and pollution; yet there is little information about the economic value of conserving forests for water quality protection in much of the United States. To assess this value, we conducted a meta-analysis of willingness-to-pay (WTP) for protecting unimpaired waters, and econometrically determined several significant drivers of WTP: type of conservation instrument (tool), aquatic resource type, geographic context, spatial scale, time, and household income. Using a benefit transfer to two highly forested sites, we illustrate the importance of these factors on WTP for water quality protection programs, forest conservation and policy design
The Kuiper Belt and Other Debris Disks
We discuss the current knowledge of the Solar system, focusing on bodies in
the outer regions, on the information they provide concerning Solar system
formation, and on the possible relationships that may exist between our system
and the debris disks of other stars. Beyond the domains of the Terrestrial and
giant planets, the comets in the Kuiper belt and the Oort cloud preserve some
of our most pristine materials. The Kuiper belt, in particular, is a
collisional dust source and a scientific bridge to the dusty "debris disks"
observed around many nearby main-sequence stars. Study of the Solar system
provides a level of detail that we cannot discern in the distant disks while
observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book
"Astrophysics in the Next Decade
Renormalization of composite operators
The blocked composite operators are defined in the one-component Euclidean
scalar field theory, and shown to generate a linear transformation of the
operators, the operator mixing. This transformation allows us to introduce the
parallel transport of the operators along the RG trajectory. The connection on
this one-dimensional manifold governs the scale evolution of the operator
mixing. It is shown that the solution of the eigenvalue problem of the
connection gives the various scaling regimes and the relevant operators there.
The relation to perturbative renormalization is also discussed in the framework
of the theory in dimension .Comment: 24 pages, revtex (accepted by Phys. Rev. D), changes in introduction
and summar
Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12
The present work reports synthesis, as well as a detailed and careful
characterization of structural, magnetic, and dielectric properties of
differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this
purpose, neutron and x-ray powder diffraction, SQUID measurements, and
dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO
ceramics were investigated in great detail to document the influence of
low-level doping with 3d metals on the antiferromagnetic structure and
dielectric properties. In the light of possible magnetoelectric coupling in
these doped ceramics, the dielectric measurements were also carried out in
external magnetic fields up to 7 T, showing a minor but significant dependence
of the dielectric constant on the applied magnetic field. Undoped CCTO is
well-known for its colossal dielectric constant in a broad frequency and
temperature range. With the present extended characterization of doped as well
as undoped CCTO, we want to address the question why doping with only 1% Mn or
0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor
of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni
doping changes the dielectric properties only slightly. In addition,
diffraction experiments and magnetic investigations were undertaken to check
for possible correlations of the magnitude of the colossal dielectric constants
with structural details or with magnetic properties like the magnetic ordering,
the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that
while the magnetic ordering temperature and the effective moment of all
investigated CCTO ceramics are rather similar, there is a dramatic influence of
doping and tempering time on the Curie-Weiss constant.Comment: 10 pages, 11 figure
On the effects of the magnetic field and the isotopic substitution upon the infrared absorption of manganites
Employing a variational approach that takes into account electron-phonon and
magnetic interactions in perovskites with , the
effects of the magnetic field and the oxygen isotope substitution on the phase
diagram, the electron-phonon correlation function and the infrared absorption
at are studied. The lattice displacements show a strong correlation
with the conductivity and the magnetic properties of the system. Then the
conductivity spectra are characterized by a marked sensitivity to the external
parameters near the phase boundary.Comment: 10 figure
Colossal dielectric constants in transition-metal oxides
Many transition-metal oxides show very large ("colossal") magnitudes of the
dielectric constant and thus have immense potential for applications in modern
microelectronics and for the development of new capacitance-based
energy-storage devices. In the present work, we thoroughly discuss the
mechanisms that can lead to colossal values of the dielectric constant,
especially emphasising effects generated by external and internal interfaces,
including electronic phase separation. In addition, we provide a detailed
overview and discussion of the dielectric properties of CaCu3Ti4O12 and related
systems, which is today's most investigated material with colossal dielectric
constant. Also a variety of further transition-metal oxides with large
dielectric constants are treated in detail, among them the system La2-xSrxNiO4
where electronic phase separation may play a role in the generation of a
colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in
the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator
Transitions and Ordering of Microscopic Degrees of Freedom
Compaction of Rods: Relaxation and Ordering in Vibrated, Anisotropic Granular Material
We report on experiments to measure the temporal and spatial evolution of
packing arrangements of anisotropic, cylindrical granular material, using
high-resolution capacitive monitoring. In these experiments, the particle
configurations start from an initially disordered, low-packing-fraction state
and under vertical vibrations evolve to a dense, highly ordered, nematic state
in which the long particle axes align with the vertical tube walls. We find
that the orientational ordering process is reflected in a characteristic, steep
rise in the local packing fraction. At any given height inside the packing, the
ordering is initiated at the container walls and proceeds inward. We explore
the evolution of the local as well as the height-averaged packing fraction as a
function of vibration parameters and compare our results to relaxation
experiments conducted on spherically shaped granular materials.Comment: 9 pages incl. 7 figure
- …
