315 research outputs found

    Experimental Evaluation of a LoRa Wildlife Monitoring Network in a Forest Vegetation Area

    Get PDF
    Smart agriculture and wildlife monitoring are one of the recent trends of Internet of Things (IoT) applications, which are evolving in providing sustainable solutions from producers. This article details the design, development and assessment of a wildlife monitoring application for IoT animal repelling devices that is able to cover large areas, thanks to the low power wide area networks (LPWAN), which bridge the gap between cellular technologies and short range wireless technologies. LoRa, the global de-facto LPWAN, continues to attract attention given its open specification and ready availability of off-the-shelf hardware, with claims of several kilometers of range in harsh challenging environments. At first, this article presents a survey of the LPWAN for smart agriculture applications. We proceed to evaluate the performance of LoRa transmission technology operating in the 433 MHz and 868 MHz bands, aimed at wildlife monitoring in a forest vegetation area. To characterize the communication link, we mainly use the signal-to-noise ratio (SNR), received signal strength indicator (RSSI) and packet delivery ratio (PDR). Findings from this study show that achievable performance can greatly vary between the 433 MHz and 868 MHz bands, and prompt caution is required when taking numbers at face value, as this can have implications for IoT applications. In addition, our results show that the link reaches up to 860 m in the highly dense forest vegetation environment, while in the not so dense forest vegetation environment, it reaches up to 2050 m

    Glycosylated haemoglobin (A1c) best values for type 2 diabetes in the battlefield much ado about nothing? (apparently)

    Get PDF
    Despite intensive research, therapy of diabetes mellitus type 2 (T2DM) is far from be effective. The most important unresolved issue is to establish a safe glycosylated hemoglobin C (A1c) value well balanced between benefit and side effects. As a result different guidelines suggest different A1c targets generating confusion for patients and clinicians. Here we report two observations which might support a relaxed A1c as suggested by American college of physician (ACP)

    Datacenter in a box: test your SDN cloud-datacenter controller at home

    Get PDF
    In the last years, the widespread of Cloud computing as the main paradigm to deliver a large plethora of virtualized services significantly increased the complexity of Datacenters management and raised new performance issues for the intra-Datacenter network. Providing heterogeneous services and satisfying users’ experience is really challenging for Cloud service providers, since system (IT resources) and network administration functions are definitely separated. As the Software Defined Networking (SDN) approach seems to be a promising way to address innovation in Datacenters, the paper presents a new framework that allows to develop and test new OpenFlow–based controllers for Cloud Datacenters. More specifically, our framework enhances both Mininet (a well–known SDN emulator) and POX (a network controller written in python), with all the extensions necessary to experiment novel control and management strategies of IT and network resources.FEDER Funds through the Programa Operacional Fatores de Competitividade - COMPETE and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-022674Italian Ministry of University and Research funded project Green-Net (contract n. RBFR100QHJ

    Design, Development and Evaluation of an Intelligent Animal Repelling System for Crop Protection Based on Embedded Edge-AI

    Get PDF
    In recent years, edge computing has become an essential technology for real-time application development by moving processing and storage capabilities close to end devices, thereby reducing latency, improving response time and ensuring secure data exchange. In this work, we focus on a Smart Agriculture application that aims to protect crops from ungulate attacks, and therefore to significantly reduce production losses, through the creation of virtual fences that take advantage of computer vision and ultrasound emission. Starting with an innovative device capable of generating ultrasound to drive away ungulates and thus protect crops from their attack, this work provides a comprehensive description of the design, development and assessment of an intelligent animal repulsion system that allows to detect and recognize the ungulates as well as generate ultrasonic signals tailored to each species of the ungulate. Taking into account the constraints coming from the rural environment in terms of energy supply and network connectivity, the proposed system is based on IoT platforms that provide a satisfactory compromise between performance, cost and energy consumption. More specifically, in this work, we deployed and evaluated various edge computing devices (Raspberry Pi, with or without a neural compute stick, and NVIDIA Jetson Nano) running real-time object detector (YOLO and Tiny-YOLO) with custom-trained models to identify the most suitable animal recognition HW/SW platform to be integrated with the ultrasound generator. Experimental results show the feasibility of the intelligent animal repelling system through the deployment of the animal detectors on power efficient edge computing devices without compromising the mean average precision and also satisfying real-time requirements. In addition, for each HW/SW platform, the experimental study provides a cost/performance analysis, as well as measurements of the average and peak CPU temperature. Best practices are also discussed and lastly, this article discusses how the combined technology used can help farmers and agronomists in their decision making and management process

    Two-year monitoring of water hydrochemistry in a Pb-Zn Mississippi Valley-Type mine (MVT) in the Southeastern Alps (Raibl, Friuli Venezia Giulia)

    Get PDF
    The recent and past mining activities are among the main anthropic sources of dispersion of potentially toxic trace elements (PTEs) in the environment. In this study, a two year monitoring of different water bodies in a decommissioned mining site located in the Southeastern Alps (Friuli Venezia Giulia, Raibl mine) was performed. Results have allowed to provide a characterisation of the hydrogeochemistry, the chemical signatures and the temporal-spatial variations of PTEs in a carbonate-hosted Pb-Zn Mississippi Valley-Type (MVT) mine, where no acid mine drainages (AMD) occur. Besides mineralogy and pH-Eh conditions, strong rainfalls and high-flow events are the main factors affecting the temporal variability of dissolved PTEs, promoting their dissolution and dispersion. Anomalous concentrations of trace metals (Zn, Pb, Tl) were found in near neutral pH-buffered groundwaters entrapped in tailings impoundments, whereas concentrations of metalloids (As, Sb and Ge) were more abundant in low-flow water drainage from mine adits. High concentrations of Tl were found in the saturated area of the tailings impoundments, related to relatively lower pH and sulfate ions contents, thus suggesting Tl-bearing pyrite/marcasite oxidation. At the same time, low concentrations of dissolved Ge and Cd in groundwaters entrapped in tailings are possibly associated to sphalerite-depleted post-flotation tailings. Based on chemical data, modeling and literature, attenuation processes of dissolved PTEs (mainly Pb) are mainly attributed to sorption onto Fe-oxy-hydroxides, which is pH-dependent, and precipitation of mineral phases (e.g., dissolved Zn to hydrozincite: Zn5(CO3)2(OH)6). The Tl/Zn and Tl/Pb ratios show that enrichments occur without notable attenuation inside the tailings impoundments, possibly indicating that Tl attenuation needs higher pH to effectively promote adsorption onto Fe-oxy-hydroxides, as, conversely, occurs in the Rio del Lago stream waters

    Promoting STEM via UMI: an Ecological Framing of CoPs in Networking and Networked Robotics

    Get PDF
    Ubiquitous Computing, Mobile Computing and Internet of Things (UMI) technologies, are widely diffused in the everyday life. In addition to their primary usage (e.g., supporting the implementation of the future 5G network),these technologies can be used in the context of Science Education.According to this perspective, the innovative psycho-pedagogical approach here presented has been ad-hoc developed for the Horizon 2020 Project “Exploiting Ubiquitous Computing, Mobile Computing and the Internet of Things to promote Science Education” (Umi-Sci-Ed). The aim of the project is to enhance knowledge and skills of Science, Technology, Engineering and Mathematics (STEM) and to promote positive attitudes towards these disciplines. In order to reach this goal, the UMI technologies, framed in the Community of Practices (CoPs) paradigm, will be introduced in the learning process of secondary schools’ students (i.e., 9thand 10thgrade). Specifically, the students will attend to innovative learning activities, such as hands-on activities, concerning with Networking and networked Robotics. In the present contribution, the theoretical framework that constitutes the rationale for the Umi-Sci-Ed projectwill be described. In particular, the “bottom-up” socio-constructionist perspective will be presented, aswell as the main technological tools (e.g., UDOO) that would be used to implement an integrated STEM learning environment. The expected results of the project will be discussed

    Portable X-ray Fluorescence (pXRF) as a Tool for Environmental Characterisation and Management of Mining Wastes: Benefits and Limits

    Get PDF
    Portable X-ray fluorescence (pXRF) is one of the main geochemical techniques employed in multi-elemental analysis screening for contaminated sites management. As the confidence of pXRF analyses are matrix-specific, efforts are made to provide studies of pXRF quality on different geochemical datasets, focusing on less investigated elements such as mercury (Hg) and antimony (Sb), to help both new and experienced users. The analysis of environmental solid samples from two decommissioned mining sites in NE Italy, characterised by Pb-Zn and (Hg-rich) Cu-Sb ore deposits, were prepared with two different protocols and compared with traditional destructive analyses. Sample composition was found strictly dependent to the occurrence of false positives and overestimation at low concentrations. In contrast, milling the sample did not produce major variations in the overall quality. Lead (Pb), Sb, and Zn reached the definitive data quality in at least one of the two datasets. Consequently, as far as a thorough QA/QC protocol is followed, pXRF can rapidly produce chemical data that is as accurate as that produced by destructive standard laboratory techniques, thus allowing to identify potential sources of contamination that could be reprocessed for the extraction of valuable elements and mitigating the dispersion of contaminants and ecological or health risks

    Mobility and fate of Thallium and other potentially harmful elements in drainage waters from a decommissioned Zn-Pb mine (North-Eastern Italian Alps)

    Get PDF
    The potential impact of decommissioned mining areas on the quality of water resources is an issue of major concern for local communities. Acid mine drainage resulting from hydrolysis and oxidation of metal sulphides associated with mineral veins or mining wastes is often responsible for leaching large amounts of potentially harmful elements (PHEs) in solution, which can be dispersed into the surrounding environment and affect the quality of the recipient water bodies. The aim of the present study was to investigate the geochemical properties of the mine drainage waters at the decommissioned Salafossa mine (North-Eastern Italian Alps), to highlight anomalous concentrations of PHEs outflowing from the currently flooded galleries and to elucidate their speciation. In spite of the Zn-Pb sulphides still present in the body ore, there is no evidence of acid drainage waters from the mine galleries as a result of the buffering effect produced by carbonate host rocks. Due to their high mobility, however, Zn and Tl are present in solution mostly in ionic form. Conversely, the less mobile Pb, is referably partitioned in the solid phase. Additionally, the oxidising conditions of the drainage waters also allow the precipitation of some PHEs (As, Cd, Pb, Tl, Zn) in the form of Fe-Mn oxy-hydroxides and carbonates, which accumulate at the bottom of the mine galleries as fine \u201csediments\u201d or concretions. Drainage waters inside the mine were found to be highly enriched in Zn (up to 16 mg L\u20101), Fe (up to 5 mg L\u20101) and Tl (up to 260 \u3bcg L\u20101). Their concentrations, however, are partially diluted in the mine due to a mixing with less mineralised waters before being discharged into the Piave River, the major tributary downstream from the mining area. Although drainage waters are still characterised by high concentrations of Tl (about 30 \u3bcg L\u20101) at their outflow, dilution in the Piave River seems to be the only natural process mitigating the impact of PHEs within the drainage basin

    Antibacterial-Nanocomposite Bone Filler Based on Silver Nanoparticles and Polysaccharides

    Get PDF
    Injectable bone fillers represent an attractive strategy for the treatment of bone defects. These injectable materials should be biocompatible, capable of supporting cell growth and possibly able to exert antibacterial effects. In this work, nanocomposite microbeads based on alginate, chitlac, hydroxyapatite and silver nanoparticles were prepared and characterized. The dried microbeads displayed a rapid swelling in contact with simulated body fluid and maintained their integrity for more than 30\ua0days. The evaluation of silver leakage from the microbeads showed that the antibacterial metal is slowly released in saline solution, with less than 6% of silver released after 1\ua0week. Antibacterial tests proved that the microbeads displayed bactericidal effects toward S. aureus, P. aeruginosa and S. epidermidis and were also able to damage pre-formed bacterial biofilms. On the other hand, the microbeads did not exert any cytotoxic effect towards osteoblast-like cells. After characterization of the bioactive microbeads, a possible means to embed them in a fluid medium was explored in order to obtain an injectable paste. Upon suspension of the particles in alginate solution or alginate/hyaluronic acid mixtures, a homogenous and time-stable paste was obtained. Mechanical tests enabled to quantify the extrusion forces from surgical syringes, pointing out the proper injectability of the material. This novel antibacterial bone-filler appears as a promising material for the treatment of bone defects, in particular when possible infections could compromise the bone-healing process
    • …
    corecore