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ABSTRACT In recent years, edge computing has become an essential technology for real-time application
development by moving processing and storage capabilities close to end devices, thereby reducing latency,
improving response time and ensuring secure data exchange. In this work, we focus on a Smart Agriculture
application that aims to protect crops from ungulate attacks, and therefore to significantly reduce production
losses, through the creation of virtual fences that take advantage of computer vision and ultrasound emission.
Starting with an innovative device capable of generating ultrasound to drive away ungulates and thus protect
crops from their attack, this work provides a comprehensive description of the design, development and
assessment of an intelligent animal repulsion system that allows to detect and recognize the ungulates
as well as generate ultrasonic signals tailored to each species of the ungulate. Taking into account the
constraints coming from the rural environment in terms of energy supply and network connectivity, the
proposed system is based on IoT platforms that provide a satisfactory compromise between performance,
cost and energy consumption. More specifically, in this work, we deployed and evaluated various edge
computing devices (Raspberry Pi, with or without a neural compute stick, and NVIDIA Jetson Nano)
running real-time object detector (YOLO and Tiny-YOLO) with custom-trained models to identify the most
suitable animal recognition HW/SW platform to be integrated with the ultrasound generator. Experimental
results show the feasibility of the intelligent animal repelling system through the deployment of the animal
detectors on power efficient edge computing devices without compromising the mean average precision
and also satisfying real-time requirements. In addition, for each HW/SW platform, the experimental study
provides a cost/performance analysis, as well as measurements of the average and peak CPU temperature.
Best practices are also discussed and lastly, this article discusses how the combined technology used can
help farmers and agronomists in their decision making and management process.

INDEX TERMS Ungulates, Internet of Things, Smart Agriculture, Edge Computing, Real-time Embedded
Systems, Object Detection

I. INTRODUCTION

IN the Agriculture 4.0 era, cutting-edge technologies such
as the Internet of Things (IoT), Big Data, Blockchain,

Edge/Cloud computing, and Artificial Intelligence (AI) are
increasingly used to enable innovative applications that have

the potential to revolutionize our daily lives [1]–[3].
Agriculture automation has been on the rise leveraging,

among others, Deep Neural Networks (DNN) and IoT for
the development and deployment of many controlling, mon-
itoring and tracking applications at a fine grained level [4].
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For instance, the automation of agricultural production has
enabled the continuous monitoring of crop growth and the
intelligent management of weeds [5]. This helps to pro-
vide accurate and efficient solutions to support agricultural
activities compared to the traditional methods, which are
performed manually, with processes that are time consuming,
tedious, increase production costs, and are prone to errors.

In this rapidly evolving scenario, managing the relation-
ship with the elements external to the agriculture ecosystem,
such as wildlife, is a relevant open issue. One of the main
concerns of today’s farmers is protecting crops from wild
animals attacks. In the last three decades, indeed, the amount
of damages caused by predatory wild animals have signifi-
cantly increased all over Europe. For instance, the percentage
of losses in top wine production due to ungulates attacks
amounts to 75% of total losses. In the region of Tuscany,
Italy, wild boars, roe deers and fallow deers (see Figure 1)
are the most common ungulates causing crop damage [6],
[7]. There are different traditional approaches to address this
problem which can be lethal (e.g., shooting, trapping) and
non-lethal (e.g., scarecrow, chemical repellents, organic sub-
stances, mesh, or electric fences). Nevertheless, some of the
traditional methods have environmental pollution effects on
both humans and ungulates, while others are very expensive
with high maintenance costs, with limited reliability and
limited effectiveness.

As shown in [8], [9], the authors of this paper have
recently contributed to the design and development of an
innovative ad-hoc system capable of detecting the presence
of animals1 by means of a PIR sensor, and repelling them
through the generation of ultrasounds, which has recently
been proven as an alternative, effective method for protecting
crops against ungulates. Animals generally have a sound
sensitive threshold that is far higher than humans. They can
hear sounds having lower frequencies with respect to the
human ear. For instance, while the audible range for humans
is from 64Hz – 23KHz, the corresponding range of goats,
sheep, domestic pigs, dogs and cats is 78Hz – 37KHz,
10Hz – 30KHz, 42Hz – 40.5KHz 67Hz – 45KHz and
45Hz – 64KHz respectively [10], [11]. Researchers have
shown that generating ultrasounds within the critical per-
ceptible range causes animals to be disturbed, thus making
them move away from the sound source [12]. At the same
time, these ultrasounds are not problems to the human ear
even when the frequency range is beyond the human ear. The
human eardrum has a far lower specific resonant frequency
than animals and cannot vibrate at ultrasound frequency. In
addition, such solution is non-lethal and has no effect of
environmental pollution, no impact on the landscape, and no
limitation on tourists’ and bikers movements, which is very
relevant especially in tourist areas.

In this paper, we present an upgraded version of the sys-
tem, that combines AI Computer Vision for detecting animal
species, and specific ultrasound emission (i.e., different for

1We use the terms “animals" and “ungulates" interchangeably

each species) for repelling them. The new system requires
communication, computation and storage capabilities, and
therefore we designed and developed an infrastructure that
integrates ad-hoc IoT devices, Edge and Cloud Computing.

Within the IoT world, the need for edge computing devices
that utilize complex AI algorithms in the consumer market
are skyrocketing [13]–[15]. This helps to bring computation
and data storage onto the device by addressing latency, secu-
rity and load balancing issues [16], [17] but may suffer from
poor performance and energy efficiency [18]. This is because
many AI algorithms require computational power that greatly
outweighs the capacity of resource-and energy constrained
IoT devices. However, this has inspired the industry and
academia to look for new computing and storage solutions
that can enable both dense and energy efficient architectures
for embedded devices. In this work, we explore the case of
embedded artificial intelligence, in which the data analysis
runs directly on the embedded system itself.

As our system is deployed in rural areas, where energy
efficiency is essential, we evaluated some HW and SW ar-
chitectural alternatives for the design and implementation of
the AI embedded Edge computing components to be added to
our system. More specifically, in this work, as regards HW,
we considered two low-power consumption edge computing
devices: Raspberry Pi Model 3 B+ (hereinafter, RPi 3B+)
with or without Intel Movidius Neural Compute Stick (NCS)
and NVIDIA Jetson Nano, whereas animal recognition pro-
grams were developed on two DNN-based real-time object
detectors including YOLOv3 and Tiny-YOLOv3. These con-
stitute state-of-the-art real-time detectors with an acceptable
trade-off between accuracy and efficiency that enables their
deployment on hardware platforms with limited computa-
tional capabilities. Moreover, as the coverage of telecommu-
nication infrastructures in rural areas is generally poor or
absent, and troubleshooting or maintenance operations are
very difficult, we identified LoRa and LoRaWAN as the most
suitable connectivity solutions, especially for monitoring and
control operations as demonstrated in [19], [20]. This ensures
robustness, low power consumption and ability to cover wide
areas.
The main contributions of this article are:

1) We provide a thorough, complete description of the
design, deployment and assessment of an intelligent
smart agriculture repelling and monitoring IoT system
based on embedded edge AI, to detect and recognize
the ungulates, as well as generate ultrasonic signals
tailored to each species of the ungulate.

2) We provide a methodology for deploying the system.
3) We deploy and evaluate various edge computing de-

vices (Raspberry Pi, with or without a neural compute
stick, and NVIDIA Jetson Nano) running real-time
object detector (YOLO and Tiny-YOLO) with custom-
trained models to identify the most suitable animal
recognition HW/SW platform to be integrated with the
ultrasound generator.
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Figure 1: (A) wild boar in a vineyard, (B) wild boar (C) roe deer (D) fallow deer

4) For each HW/SW platform, we provide an experimen-
tal study that provides a cost/performance analysis, as
well as measurements of the average and peak CPU
temperature.

5) We provide how the combined technology used can
help farmers and agronomists in their decision making
and management process.

The rest of this paper is organized as follows: Section II
presents the related work and the background. Edge-AI is
also described in this section. The overall system architecture
is described in Section III, with emphasis on the hardware
description. Section IV introduces the innovative application
focusing on data set description, image pre-processing and
the DNN based animal detectors. In Section V, we present
the experimental setup, where the experimental results dis-
cussing the model performance and the embedded implemen-
tation are presented Lastly, Section VI concludes the paper
with some final remarks.

II. BACKGROUND AND RELATED WORKS
In this section, we provide the background about the tech-
nologies used in this work focusing on real-time detection

and edge-AI. Next, we present the related works.

A. REAL-TIME DETECTION BACKGROUND

Running a real time object detection algorithm involves com-
putational demanding tasks, which involves powerful devices
where these algorithms are implemented on. This is essential
to achieve good results in less time. However, due to the
nature of our problem and its environs, device portability
plays a major role in realizing a real-time animal detection.
This is challenging because of the additional constraints in
terms of memory footprint and power consumption, which
generally conflict with latency and accuracy requirements.
This paper will promote the use of embedded devices with
low form factor.

As earlier described, DNN need high performance com-
puting resources (i.e. devices with graphics processing units
(GPU)) for real time computations. This makes it difficult
to deploy DNN on embedded systems with low computation
resources, due to its extensive computation tasks. However,
there are some condensed versions of some DNNs that
work on low computation embedded systems efficiently, as
well as some embedded systems with commercial hardware
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accelerators such as NCS and Google Coral [21], where
DNN computations can run efficiently in real-time bringing
the concepts of edge-AI. Such hardware accelerators feature
optimized hardware architectures that allow to realize infer-
ences of DNN models with low latency and reduced power
consumption.

There are several platforms available in order to run the
object detection algorithms. OpenCV and Tensorflow are
considered proven platforms for machine learning purposes
[22]. OpenCV is a mature and stable computer vision library,
with an impressive user community. Using OpenCV results
in more utilization of time and resources in image processing
and less in interpreting, thus resulting in faster execution.
On the other hand, tensorflow is a framework that enables
a developer to create his/her algorithms, in addition to the
ones it has implemented. Tensor is less mature than OpenCV,
and on this note, OpenCV is selected as the benchmark in our
system.

In the literature, several deep learning approaches, in-
cluding Region-Based Convolutional Neural Networks (R-
CNN), You Only Look Once (YOLO), and Single Shot
multibox Detector (SSD) have been applied extensively to
agriculture-related applications. Faster R-CNN [23] uses the
region proposal network (RPN) method to detect a region
of interest (RoI) in the image. Then a classifier is used to
classify bounding boxes, and fine tuning is used to process
the bounding boxes, enabling a speed increase over R-CNN,
while the target can be detected accurately. He et al. intro-
duced Mask-RCNN [24], which is an extension to Faster R-
CNN for instance segmentation (i.e., location of exact pixels
followed by masks for each object inside the bounding box).

While Faster R-CNN and Mask-RCNN were 2-stage meth-
ods (region proposal stage followed by classification stage),
YOLO was developed as a one stage method. In YOLO,
the object classification (the category of the bounding box)
and object positioning (the position of the bounding box)
can be predicted through a single convolutional network in
one step. The ‘single shot detector’ SSD implemented prior
boxes (subsets of fixed sized anchor boxes) at different reso-
lutions of feature maps at different levels inside the network
for multi-scale training, making it a very fast (faster than
Faster R-CNN) yet accurate framework for object detection.
The YOLOv3 (the third version of the YOLO), being one
of the state-of-the-art detectors was chosen because of its
stability and its ability to achieve good performances with
high frame rate. YOLOv3 has high detection accuracy and
speed and it also performs well with detecting small targets.
Another strength in YOLOv3 is its tiny version, which is
lighter, smaller (less layer) and faster (execution time). Tiny-
YOLOv3 has less accuracy than other CNNs, but it is very
convenient for constrained environments, which is the main
focus of our problem statement. Therefore, YOLOv3 and
Tiny-YOLOv3 are the object detection algorithms proposed
for our testbed and use case. A list of abbreviations used in
this article is provided in Table 1.

Table 1: List of Abbreviations

Symbols Description
AI Artificial Intelligence
AP Average Precision
API Application Programming Interface

ARM Advanced RISC Machines
ASIC Application Specific Integrated Circuits
CNN Convolutional Neural Networks
CPU Central Processing Unit

CUDA Compute Unified Device Architecture
DNN Deep Neural Networks
EUI Extended Unique Identifier

FLOPS Floating Point Operations per Second
FN False Negative
FPS Frames per Second
GPU Graphics Processing Unit
HW Hardware
IoT Internet of Things
IoU Intersection over Union
LiPo Lithium-ion Polymer

LoRaWAN Long Range Wide Area Network
LPWAN Low-Power Wide-Area Network

mAP Mean Average Precision
MPPT Maximum Power Point Tracker
NCS Neural Compute Stick

OTAA Over-the-Air Activation
PIR Passive Infra-red

PWM Pulse Width Modulation
R-CNN Region-Based Convolutional Neural Networks
RAM Random-Access Memory
RoI Region of Interest
RPi Raspberry Pi
RPN Region Proposal Network
SSD Single Shot Multibox Detector
SoC System on Chip
SW Software
TTN The Things Network
TP True Positive

TPU Tensor Processing Unit
UAV Unmanned Aerial Vehicle
USB Universal Serial Bus

YOLO You Only Look Once

B. EDGE-AI

Artificial intelligence (AI) on edge will be part of the next
generation of the Internet of Things. Moreover, the need to
bring more essential computation onto the devices has been
on the increase, which undoubtedly serve as the concept
for edge-AI. This has to do with performing computations
locally on an embedded system to deal with applications with
low latency situations and real-time responses by boosting
operational speed, reducing decision latency, network con-
gestion and power consumption. Edge-AI computing mech-
anism for agricultural applications is very vital for the entire
world to solve most of the relevant issues at global level.
The challenge in meeting the implementation requirements
for edge-AI is to ensure high output accuracy of algorithms
while consuming low power. Nevertheless, the innovation in
hardware options, involving central processing units (CPUs),
GPUs, application-specific integrated circuits (ASICs), and
system-on-a-chip (SoC) accelerators, has made edge-AI pos-
sible.

Qualcomm, Intel and NVIDIA are the leading market
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brands which are contributing enormously to the develop-
ment of AI at the edge. Some of the devices are Intel’s
Movidius Neural Computing Stick (NCS), NVIDIA’s Jetson
variants such as TX1, TX2, Nano, AGX Xavier which are
considerably cheap, with low form factor, light weight and
works efficiently to implement computationally extensive
algorithms with multiple layers of CNN. Another importance
of NVIDIA Jetson variants is the introduction of CPU-GPU
architecture [25], where CPU boots up the firmware and
the CUDA-capable GPU come with potential to accelerate
complex machine-learning tasks.

C. RELATED WORKS
With the rapid increase of machine learning in various sec-
tors, deep learning technology has been extensively used
in agriculture-related applications [26]. Deep learning can
be used for animal identification, crop classification among
others. In recent years, the development of DNN achieved
good results in crop detection such as strawberry detection
[27], mango detection [28] and apple detection [29], in
weed classification [5], in face recognition [30], [31], in be-
havioural recognition [32], handwritten character recognition
[33], license plate recognition [34].

Shifting to animal identification, animal detection has
been researched by many researchers for the purposes of
estimation, localization among others. The work in [35]
examined how YOLOv3 was able to locate sheep in drone
footage. The work was able to detect sheep as a superclass,
with a resolution of 832 × 832 pixels, and a confidence
ratio of 0.1 yielding a reliability of 99%. In [36], the authors
introduced FLYOLOv3, a deep learning filter layer YOLOv3
to detect the key parts of dairy cows in complex scenes.
Wang, Juan, et.al The work in [37] presented a YOLOv3
model to detect the behaviour of egg breeders. In addition,
transfer learning was also implemented to expand the DNN
model in realizing the behaviour recognition of egg breeders
with low stock density. The authors in [38] also followed the
same approach by proposing an automated broiler digestive
disease detector based on DNN model to classify fine-grained
abnormal broiler droppings images as normal and abnormal.

The work in [39] introduced a drone-based approach for
cattle detection using SSD and YOLOv3 as the object detec-
tors. However, very few images were captured for training
the dataset, which reflected on the results. The work in
[40] provided a holistic approach in using different DNN
object detector methods including YOLOv3 to create bird
detection models using aerial photographs captured by Un-
manned aerial vehicle (UAV). The work presented the model
performance, but lacked the implementation of the model on
a platform. [41] introduced YOLO Fish, an effective fish de-
tector using YOLO on nordic fish species. Moreover, in [42],
the use of animal behavior analysis software was also used
to evaluate the behavior of chickens such as Pocket Observer
Version 3 (Noldus Information Technology; Wageningen, the
Netherlands).

With the idea of implementing deep learning algorithms on

embedded platform, we briefly describe some of the works
that utilizes deep learning on embedded platforms related
to Agriculture. The use of RPi has also been demonstrated
by [43] by using devices to repel birds in optimizing crop
production in Agriculture. RPi and NVIDIA Jetson TX2
were used in [44] to monitor and detect Asian citrus psyllid
pests in orchards using convolutional neural networks. The
use of RPi with Intel Movidius has been demonstrated in
[45] to perform seeds recognition, and germination detection
through the images processing, where 97% accuracy and
83% of IoU was achieved. The work in [46] presented a
Neural Network based prediction model that acts as a data
collector for sensor nodes to measure air temperature inside
a greenhouse with embedded devices such as RPI. Livestock
detection algorithm using modified versions of U-net and
Google Inception-v4 net was presented in [47]. In this work,
we made use of Tiny-YOLOv3 and YOLOv3 as our object
detector.

However, despite these studies being successful in terms
of animal detection, most of them focused on the model per-
formance rather than providing both the model performance
and its implementation on a platform. In addition, the number
of images used in these studies was relatively small. There-
fore, these methods show some limitations in terms of their
ability to detect animals across various environments. This
work presents a real-time monitoring solution based on IoT
technology to address the problems of crop damages against
ungulates. This work, an embedded Edge-AI application,
focuses on the model performance of YOLOv3 and Tiny-
YOLOv3 as well as implementing it in real-time, running on
various embedded systems such as RPi 3B+ with or without
Intel Movidius NCS and NVIDIA Jetson Nano.

Relating to ultrasound in animals, researchers have shown
that the use of Ultrasound emission is an excellent system to
repel ungulates, without simultaneously disturbing humans.
Extraneous sound usage has been demonstrated in [48] to be
stressful to animals and said to have profound behavioural,
physiological and even anatomical effects. In the literature,
ultrasound usage has been shown to be effective in repelling
bats in [49], rodents in [50] and even insects in [51]. Our
work is based on the repelling of ungulates especially wild
boar, deer and wolves with the use of ultrasounds.

III. INTELLIGENT ANIMAL REPELLING SYSTEM
ARCHITECTURE
In this section, we present the overall system architecture
(see Figure 2), and we analyze in detail the characteristics of
the Intelligent Animal Repelling Devices and of the network
infrastructure.

A. INTELLIGENT ANIMAL REPELLING DEVICE

As mentioned in the introduction section, the system is based
on Intelligent Animal Repelling Devices, which enable real-
time animal recognition and repelling. To this aim, a new
version of the Animal Repelling Device has been integrated
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Figure 2: System Architecture

with a tiny and powerful edge computing device running
DNN software.

1) Detection and ultrasound generation
The board of the new Animal Repelling Device is still
based on the ATSAMD21G18A 32-bit ARM Cortex® M0+
core architecture clocked at 48MHz, with 32KB of RAM
and 512 KB of flash memory. It also features a LoRa
module RN2483A and xbee radio module supported by the
LoRaWAN and IEEE 802.15.4 standard respectively. The
device uses a solar panel and LiPo batteries charged with the
use of Maximum Power Point Tracker (MPPT). Moreover,
the device is equipped with a PIR sensor to detect targets
and activate animal recognition function. The power of the
ultrasound produced by the tweeter is 110dB at about ∼1m
in a wide band of 18kHz−27kHz. Frequencies can be tuned
according to the animal to repel.

2) Real-time animal recognition
For the implementation of the animal recognition model, and
to improve real-time performance, different edge computing
devices have been considered: RPi 3B+ with or without Intel
Movidius NCS and NVIDIA Jetson Nano. Figure 3 shows the
hardware platforms considered in this work, while Table 2
provides a comparison between their main specifications.

Intel Movidius NCS is the first generation of the neural
compute sticks, an embedded AI platform designed by Intel

Figure 3: RPi 3B+ with Intel Movidius NCS on the left and
NVIDIA Jetson Nano on the right

Movidius [52]. It is a USB hardware accelerator designed for
low power devices to achieve high frame rates. At the core
of this device is the Myriad 2 Visual Processing Unit (VPU)
processor, an AI-optimized chip for accelerating vision com-
puting based on CNN. Intel Movidius NCS provides a USB
3.0 interface and can be easily attached to edge devices such

6 VOLUME 4, 2016
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Table 2: Main specifications of the platforms investigated in this study

Features Intel Movidius NCS NVIDIA Jetson Nano RPi 3B+
Size 73 × 26 mm 73 × 45 mm 85.6 × 56.5 mm

HW Accelerator Myriad 2 VPU 128-core NVIDIA Maxwell
GPU N.A

CPU N.A Quad-core ARM A57 @
1.43GHz Quad-core Cortex-A53

Memory 4GB LPDDR3 4GB LPDDR4 1GB LPDDR2
Nominal Power 1W 5/10W 2W

Weight 18g 140g 50g
Peak Performance 100GFLOPs 472GFLOPs 6GFLOPS

as RPi.
RPi 3B+ is one of the most used embedded platforms with

a large variety of usage. RPi 3B+ is a low-cost, small size,
powerful computer board with onboard electronics support-
ing a large number of input and output peripherals [53]

NVIDIA Jetson Nano is one of the recent Jetson platforms
presented by NVIDIA. NVIDIA Jetson Nano is a small pow-
erful embedded computer with a dedicated GPU for hardware
acceleration. It was presented in June 2019 and allow to
run multiple neural networks in parallel for applications
like image classification, object detection, segmentation, and
speech processing. It features a 128-core NVIDIA Maxwell®

GPU with a AI peak performance of 472GFLOPs. [54] It runs
multiple neural networks in parallel and processes several
high-resolution sensors simultaneously, providing a high-
performance computing at just 5W to 10W.

3) Integration between animal recognition and animal
repelling functions
When a movement is detected through the PIR sensor,
the SAMD21 microprocessor sends an “activity detection”
message to the edge computing device through the xbee
radio interface. Note that, the edge computing device is also
equipped with the xbee radio, which makes it to be embedded
with IEEE 802.15.4 capabilities. The edge computing device
activates the camera, then executes its DNN software to
identify the target, and if an animal is detected, it sends back
a message to the Animal Repelling Device including the type
of ultrasound to be generated according to the category of the
animal. The “activity" message is also transmitted from the
repeller device via LoRa to the LoRa gateway, which then
forwards the packet to the TTN server.

B. NETWORK INFRASTRUCTURES
A LoRa/LoRaWAN network has been set-up leveraging The
Things Network (TTN)2. The network consists of the follow-
ing parts:

• Intelligent Animal Repelling Devices: Type A LoRa
end-nodes with firmware supporting LoRaWAN pro-
tocol and OTAA, i.e., communication with the LoRa

2https://www.thethingsnetwork.org/

network server to perform the activation process, called
JOIN procedure. In TTN a new application has been
created (AppID, AppEui, Description, Handler) and
devices have been registered with their configuration
parameters (Device ID, Device EUI, AppEUI, AppKey,
AppEUI).

• Gateway: a LoRa gateway has been set-up and con-
figured to enable the coverage of the area where the
LoRa devices are deployed. Also, the gateway has
been registered in TTN (Gateway ID, Frequency Plan,
Location, Indoor or Outdoor Placement, Description).
The gateway, which scans the frequency spectrum and
forwards all packets to the network server, is connected
to the Internet through a satellite backhaul network 3.

• Network Server: it understands the LoRa protocol and
interprets data sent by the end-devices, routing mes-
sages to the right application and back. The network
server processes data, but does not store it anywhere.
TTN provides network servers and offers a data API to
get the data out of the network. Therefore, it is possible
to store it on servers or forward it to a cloud service.

• Application: according to TTN definition, whatever de-
vices communicate with on the Internet. In our case,
the monitoring application is a visual flow developed
using Node-RED4. As previously highlighted, before
communicating with the end-devices, it is necessary to
add a new application to the TTN and register devices
to it.

IV. METHODOLOGY AND SERVICES FOR ANIMAL
RECOGNITION
A. DATA SET DESCRIPTION
In this work, we consider two popular ungulates (wild boar
and deer) in the Tuscany region of Italy. Fallow deer and
Roe deer are classified as deer in our experimental work.
Images were acquired through the use of digital camera with
20 megapixels under variable lighting conditions during the
different times and days of June to August. The images
were collected with cloudy and sunny weather conditions.
1000 images of wild boar and deer were collected during the

3https://www.skydsl.eu
4https://www.nodered.org/

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3114503, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

different times highlighted above. These 1000 images were
expanded to 10000 images using data augmentation methods,
yielding the training set. The training data set is used to train
the animal recognition model.

B. IMAGE PRE-PROCESSING AND IMAGE SETS
All object recognition methods re-size the input image to
a specific resolution (‘network resolution’) for training.
The feature extractors used by deep learning frameworks
usually require a square input resolution. In its original
configuration, YOLO resizes the input image such that the
shorter dimension of height or width is resized to 416 x416
pixels, while keeping the aspect ratio unchanged. Network
resolution can be increased to accept larger input images
(e.g., 2048 × 2048 pixels), but at the cost of increased
memory and computation requirements. Before training the
image, data augmentation was necessary to increase the
image diversity for better representation of the images. In
order to achieve better recognition accuracy and robustness
provided by effective data augmentation, it was necessary
to pre-process the images with the augmentation methods
such as jitter, image rotation, flipping, cropping, multi-scale
transformation, hue, saturation, Gaussian noise and intensity.

Training object detection models require labelled data,
i.e., the class-label and the coordinates of all ground truth
bounding boxes in training images. Manual labelling is
tedious, intensive and prone to user bias especially for images
having a large number of objects and clusters [55], annotation
((drawing of ground truth bounding boxes) on the other hand
was easier on tiles than on full images. The task of labeling
objects in images has become easier due to availability of
freely graphical annotation tools. The graphical image anno-
tation tool YOLO Annotation tool5 was used. The annotated
information was saved in YOLO Darknet format, which
includes the class of the annotated object, the coordinates
of the rectangular box among others.

C. YOLOV3 AND TINY-YOLOV3 NETWORK STRUCTURE
YOLO algorithm proposed by Redmon et.al [56] is a neural
network capable of detecting objects, people and animals
present in an image and their position in only one step and
also obtains the position and category of the object, animal
etc. directly at the output layer. The YOLO algorithm is based
on convolutional design, where an input image is divided
into a grid system and each grid cell represents a candidate
region of detected objects. The main innovation brought by
YOLO is to be able to perform the surveys in one go, so
for this reason it is quite fast and performing. Moreover,
another advantage of YOLO is the ability to predict a large
fixed number of objects and sets a threshold to eliminate pre-
dictions with low probabilities. YOLO introduces improved

5https://github.com/ManivannanMurugavel/YOLO-Annotation-Tool : ac-
cessed 03/05/2021

versions namely YOLOv2 [57] and YOLOv3 [58]. The main
difference between YOLO (the first version of YOLO) and
YOLOv2 (the second version of YOLO) is the addition of
batch normalization layers after all convolutional layers and
the removal of the last fully connected layers. The addition
of anchor boxes introduced in YOLOv2 helps in improved
accuracy in predicting the object location. Darknet-19 (a 19-
layer convolutional network) with 5 max-pooling layers is the
backbone to the YOLOv2 network.

1) YOLOv3
YOLOv3 has made significant improvements to the YOLO
network, and has been demonstrated in [58] in terms of
better accuracy and efficiency. The choice of feature extractor
is crucial as the number of parameters and types of layers
directly affect memory, speed, and performance of the detec-
tor. The backbone feature extractor for YOLOv3 is Darknet-
53. Darknet-53 (a 53-layer convolutional network) is an
improvement on Darknet-19 by the addition of successive 3
× 3 and 1 × 1 convolutional layers with skip connections
similar to ResNet [59] as shown in Figure 4. Moreover,
in YOLOv3, the softmax loss in the YOLOv2 structure is
replaced by a logistic loss, which has obvious advantages
in small object detection. YOLOv3 works by performing a
logistic regression, which indicates the bounding boxes and
the probabilities of belonging to a class for each of them, with
a single network passage.

2) Tiny-YOLOv3
Tiny-YOLOv3 is a tiny version of YOLOv3 that unifies
object detection and classification into a single regression
problem. This tiny version is based on a reduction of the
number of hidden layers. Tiny-YOLOv3 is suitable for con-
strained environments where its resource consumption leads
to an increase in speed. Though, it leads to an increase in
speed, but comes at the cost of its accuracy of the neural
network, which is just able to predict objects at two scales.
Image size of 416 × 416 is used as the input in Tiny-
YOLOv3, and two detectors consisting of 3 sub-detectors
of Yolo output 13 × 13 and 26 × 26 grids. Tiny-YOLOv3
is able to meet with real-time requirements, but with low
detection precision. Table 3 describe the settings of Tiny-
YOLOv3 network structure.

D. BATCH PROCESSING PATTERN
The parameters used in the experiment described in the next
section are as follows:

1) The batch parameter, which indicates the batch size
used during the training stage, was set to 64. This
means that 64 images from the dataset were used in
one iteration to update the parameters of the neural
network.

2) The subdivision parameter, which controls a fraction of
the batch size at one time to be processed by the GPU
was set to 2. This prevented the overload of the GPU
memory while the DNN was trained.
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Input 

Image
Output 

Image

Wild boar (75%)
Wild boar (48%)

Figure 4: Block diagram of YOLOv3 architecture. ‘Conv’ refers to ‘convolution layer’ and‘concat’ to ‘concatenation layer’.
Output image displays bounding box on region of interest (ROI), classification result for wild-boar and probability score

Table 3: Tiny-YOLOv3 original architecture with input images of dimension 416 × 416
Layer Type Filters Size/Stride Input Output
0 Convolutional 16 3 x 3/1 416 x 416 x 3 416 x 416 x 3
1 Maxpool 2 x 2/2 416 x 416 x 16 208 x 208 x 16
2 Convolutional 32 3 x 3/1 208 x 208 x 16 208 x 208 x 32
3 Maxpool 2 x 2/2 208 x 208 x 32 104 x 104 x 32
4 Convolutional 64 3 x 3/1 104 x 104 x 32 104 x 104 x 64
5 Maxpool 2 x 2/2 104 x 104 x 64 52 x 52 x 64
6 Convolutional 128 3 x 3/1 52 x 52 x 64 52 x 52 x 128
7 Maxpool 2 x 2/2 52 x 52 x 128 26 x 26 x 128
8 Convolutional 256 3 x 3/1 26 x 26 x 128 26 x 26 x 256
9 Maxpool 2 x 2/2 26 x 26 x 256 13 x 13 x 256
10 Convolutional 512 3 x 3/1 13 x 13 x 256 13 x 13 x 512
11 Maxpool 2 x 2/1 13 x 13 x 512 13 x 13 x 512
12 Convolutional 1024 3 x 3/1 13 x 13 x 512 13 x 13 x 1024
13 Convolutional 256 1 x 1/1 13 x 13 x 1024 13 x 13 x 256
14 Convolutional 512 3 x 3/1 13 x 13 x 256 13 x 13 x 512
15 Convolutional 255 1 x 1/1 13 x 13 x 512 13 x 13 x 255
16 YOLO
17 Route 13
18 Convolutional 128 1 x 1/1 13 x 13 x 256 13 x 13 x 128
19 Up-sampling 2 x 2/1 13 x 13 x 128 26 x 26 x 128
20 Route 19 8
21 Convolutional 256 3 x 3/1 13 x 13 x 384 13 x 13 x 256
22 Convolutional 255 1 x 1/1 13 x 13 x 256 13 x 13 x 256
23 YOLO

E. TRAINING PLATFORM

Edge-AI consists of performing computations locally on an
embedded system in real-time. Since the training process
requires a lot more computational power as compared to the
inference process, it cannot be performed on the embedded
platform in a reasonable amount of time. It requires a
powerful machine with integrated GPUs, or TPUs.

In our research, we avoided the use of a physical machine

and relied on a virtual machine provided by Google Cloud
Platform (GCP) to perform our model training. The virtual
machine is made up of 16 vCPU 2, 64GB of memory, with a
single NVIDIA® Tesla® T4 GPU running Ubuntu 18.04 LTS.
A T4 GPU has 16GB GDDR6 of GPU memory on-board,
and also includes NVIDIA Tensor Cores for faster training
and RTX hardware acceleration for faster ray tracing. T4 is
offered as a passively cooled board that requires system air
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flow to operate the card within its thermal limits. This GPU
is designed to accelerate inference, or predictions generated
by deep learning models, for low latency or high throughput.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, firstly some technical details of the training
process of the neural network models used by YOLOv3 and
Tiny-YOLOv3 are presented, then experimental evaluations
are discussed for both the models and their deployment on the
selected embedded platforms. Quantitative and qualitative
results are reported with a performance comparison between
the different platforms. Finally, the deployment methodology
is described.

A. MODEL PERFORMANCE
In this section, we analyze the performance of YOLOv3
and Tiny-YOLOv3 models after training their DNNs for
ungulates recognition. As highlighted in Section IV-C, both
YOLO versions are regarded as state-of-the-art object de-
tection approaches and can be used as real-time detectors
based on performance requirements. The training was carried
out on the Google Cloud Platform as demonstrated in Sec-
tion IV-E. To evaluate the models performance, we adopted
three metrics: Recall, AP (Average Precision), mAP (mean
Average Precision), which are computed using the formulas
(1), (2) and (3) respectively. These metrics are essential in
evaluating the performance of the neural networks models
for object detection:

Recall(P ) =
TP

TP + FN
(1)

AP =

∫ 1

0

p(r)dr (2)

mAP =

C∑
i=1

APi

C
(3)

As regards Recall, TP (True Positive) denotes the number
of detected ungulates, and FN (False Negative) denotes
the number of undetected ungulates, which are marked as
missing predictions. Therefore, Recall evaluates how good
the model is in detecting ungulates: low values of Recall
mean that in many cases, although present in the images,
ungulates are not detected. Precision measures the percentage
of correct predictions with respect to overall predictions for
each class of ungulates, denoting the accuracy of the detector.
mAP is the mean of AP computed over all classes where C
denotes the number of classes.

Computing the values of Precision and Recall, it is pos-
sible to get the precision/recall curve. The graph is then
usually smoothed in order to get a monotonically decreasing
precision curve by setting p(r) = maxr′≥r p(r

′). T). The
average precision of the model is computed as the area under
the obtained curve and it is always a number between 0 and

1 as shown in (2). By increasing recall, precision decreases
and the downward slope of the curve depends on the setting
of the detection threshold. High detection threshold increases
precision at the cost of low recall, on the contrary, low
detection threshold decreases precision and increases recall.
An average precision equal to 1 means that the detector is
able to reach a perfect precision (100%) for all the values of
recall, while an average precision of 0 means that the mode
can not detect any object correctly. The testing results are
presented in Table 4.

The best performance was achieved by YOLOv3, reaching
82.5% mAP and 64% Recall on the average. The Tiny-
YOLOv3 achieved 62.4% mAP and an average Recall of
49%. All experiments were for 180k iterations. Figure 5
shows some test images during the training phase. It can be
seen that YOLOv3 is able to achieve a better detection accu-
racy compared to Tiny-YOLOv3 at the expense of detection
speed.

B. EMBEDDED IMPLEMENTATION
After the training, we discuss the deployment of the models
on the hardware platforms introduced in Section III-A2. In
our experimental setup, we run Tiny-YOLOv3 and YOLOv3
in three different configurations. The first configuration con-
sists of a NVIDIA Jetson Nano as a host machine, with
a camera module attached to it. The second configuration
comprises of a RPi 3B+ as a host machine, and Intel Mo-
vidius NCS, connected to it via USB 2.0 interface. A camera
module is attached to the RPi 3B+ for detecting images. Intel
NCS takes the input image, executes the neural network and
sends the output back to RPi 3B+. The third configuration
features a RPi 3B+ with a camera module attached to it. The
corresponding schemes are shown in Figure 6.

At first, we demonstrated the performance of the NVIDIA
Jetson Nano, RPi with NCS, RPi only while running the
YOLOv3 and the Tiny-YOLOv3 in terms of the frame rate
and the average power consumption at different modes (max-
imum absorbed power), which are shown in Table 5. Various
parameters are considered as highlighted below

• FPS denotes the number of frames processed per time
unit during the execution of the detector

• Power consumption denotes the average power con-
sumption during the execution of the detector

• Power Efficiency denotes the FPS processed per watt.

We measured the power consumption of the NVIDIA Jetson
Nano executing both YOLOv3 and Tiny-YOLOv3 object
detectors. Since NVIDIA Jetson Nano works at different
modes at the expense of the computational capabilities, we
tested all of them. We observed that, while operating at 10W ,
the NVIDIA Jetson Nano switched off after a brief period of
time. This is because 10W is insufficient when peripherals
such as keyboard, mouse, camera are added to the NVIDIA
Jetson Nano. However, we were able to collect the FPS value
before the device switched off. We also observed that running
NVIDIA Jetson Nano at other higher operational modes such
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Table 4: A comparison of the performance of YOLO-V3 and Tiny-YOLOv3 in this study

Recognition Models YOLOV3 Tiny-YOLOV3
Recall AP Recall AP

Classes Wild boar 0.52 0.786 0.38 0.583
Deer 0.76 0.864 0.6 0.6652

Mean 0.64 0.825 0.49 0.6241

Deer (96%)
Deer (88%) Deer (72%)

Deer (80%)

Wild boar (55%)

Wild boar (88%)

Wild boar (65%)

Wild boar (48%)

Wild boar (75%)

Wild boar (76%)

Wild boar (64%) Wild boar (38%)

Wild boar (58%)

(a) YOLOv3

(c) YOLOv3

(b) Tiny-YOLOv3 

(d) Tiny-YOLOv3 

Figure 5: Qualitative results of some test images acquired during the data set training
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Figure 6: Detection System Schematic (A) NVIDIA Jetson Nano (B) RPi 3B+ and NCS (C) RPi 3B+
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Table 5: Comparison between devices power consumption and performances with YOLOv3 and Tiny-YOLOv3
Object Detector Platform Mode P[W] FPS Power Efficiency, FPS/W

YOLOv3 NVIDIA Jetson Nano 20W 17.32 4 0.231
YOLOv3 NVIDIA Jetson Nano 15W 12.94 3.2 0.247
YOLOv3 NVIDIA Jetson Nano 10W 8.5 3.2 0.376
YOLOv3 RPi 3B+ at 5W – – –
YOLOv3 RPi 3B+ and NCS 5W – – –

Tiny-YOLOv3 NVIDIA Jetson Nano 20W 16.70 14.8 0.832
Tiny-YOLOv3 NVIDIA Jetson Nano 15W 12.68 12.8 1.01
Tiny-YOLOv3 NVIDIA Jetson Nano 10W 8.3 10 1.205
Tiny-YOLOv3 RPi 3 B+ 5W 3.2 0.8 0.25
Tiny-YOLOv3 RPI 3 B+ and NCS 5W 3.2 4 1.25

as full power supply of 20W (5V/4A) through a barrel jack
socket and 15W (5V/3A) works fine.

Results show that NVIDIA Jetson Nano running Tiny-
YOLOv3 is the most performing solution, being able to
reach 15FPS in the 20W operational mode. Notwithstanding,
NVIDIA Jetson Nano in the 10W and 15W operational
modes running the Tiny-YOLOv3 are also suitable for real
time ungulates detection. With the NVIDIA Jetson Nano
in different modalities running YOLOv3, the frame rate
dropped to an average of 3FPS, which is acceptable in soft-
real time contexts, such as ungulates detection and repelling.

With the RPi 3B+, running Tiny-YOLOv3, the perfor-
mance is the worst reaching less than 1FPS, which is not
suitable for real time applications. Adding the Intel Movidius
NCS, we observe that the speed increases to 4FPS, but one
can still arguably discuss if it is suitable for soft-real time
applications or not. Despite the flexibility of the accelerators,
the USB accelerator can not go beyond 5FPS in the best case.

We also compared the HW platforms in terms of Cost/FPS
ratio as shown in Table 6. In real-time application, cost is a
major factor. Based on the previous results, Tiny-YOLOv3
was claimed to provide acceptable detection accuracy and
detection speed, thus in Table 6 FPS values refer to Tiny-
YOLOv3. The NVIDIA Jetson Nano appears to be the best
choice taking into account the balance between cost and
performance. Indeed, Intel NCS is a hardware USB accel-
erator, and can not be used as a stand-alone device for
real time object detection. This indicates that an additional
embedded device [53] must be purchased for the Intel NCS,
thus increasing its final cost.

Moreover, we considered the CPU temperature of the em-
bedded platform, – to determine how safely we can execute
the ungulates detectors for an extended period of time in
order to avoid overheating. The analysis of the CPU temper-
ature while using NVIDIA Jetson Nano, RPi 3B+ & NCS
are reported in Table 7. We compare the CPU temperature
with the light (i.e. Tiny-YOLOv3) and the heavy (YOLOv3)
detectors. From the Table 7, while executing YOLOv3 and
Tiny-YOLOv3 on the out-of-the-box NVIDIA Jetson Nano,
its CPU temperature reaches a peak of 51°C and an average

of 38°C for the Tiny-YOLOv3 and a peak of 58°C and and
an average of 46°C for YOLOv3 after hours of execution
of the detector. Moreover, the performance remains stable
and the CPU temperature does not reach its thermal limits,
thus not operating in the thermal throttling mode. However,
executing Tiny-YOLOv3 on RPi 3B+ with the NCS, its CPU
reaches its critical limit, having a peak temperature of 93°C
and an average of 70°C. This means that if we continue over a
long period of time, we will face the problem of performance
reduction, increased power consumption and CPU quality
reduction in the worst case situation. Against thermal issues
affecting the RPi 3B+, we attached a PWN fan, and we
obtained an improvement in the CPU temperature leading to
35°C average with a peak of 60°C.

VI. CONCLUSIONS
In this paper, we introduced a new application to defend
crops from ungulate attacks that takes advantage of the latest
technological developments in different ICT areas, such as
AI, Edge Computing, IoT and LPWAN. The implementation
of the application required the design and development of
a complex system for intelligent animal repulsion, which
integrates newly developed HW and SW components and
allows to recognize the presence and species of ungulates
in real time and also to avoid crop damages caused by the
ungulates. The system has been designed taking into account
application requirements (response time, accuracy, precision)
, resource limitations (computational power, memory) and
constraints (network coverage, energy consumption coming
from the rural environment and the impact of all these factors
on the HW and SW components, so as to achieve a satisfac-
tory trade-off between requirements and performance.

Concerning animal recognition, YOLOv3 and Tiny-
YOLOv3 have been evaluated and adopted as detectors for
their ability to work in real-time at high performance as well
as to adapt, after training their neural network models, to
different edge computing platforms, such as RPi (with or
without NCS) and Jetson Nano.
The first lesson learnt from this work is about the methodol-
ogy to follow for the design and development of the HW and
SW components enabling animal recognition and repulsion
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Table 6: Cost/Performance analysis of the different embedded platforms.
Device Cost($) Starting at FPSmax Cost/FPS

NVIDIA Jetson Nano 99 15 6.6
RPi 3B+ with Intel NCS 105 4 26.3

RPi 3B+ 35 1 35

Table 7: CPU temperature analysis of the different embedded platforms.
Object Detector Device FAN Peak Rating (°C) Average Rating (°C)

YOLOv3 NVIDIA Jetson Nano NO 58 46
YOLOv3 NVIDIA Jetson Nano YES 38 30

Tiny-YOLOv3 NVIDIA Jetson Nano NO 51 38
Tiny-YOLOv3 NVIDIA Jetson Nano YES 30 24
Tiny-YOLOv3 RPI 3B+ & NCS NO 93 70
Tiny-YOLOv3 RPI 3B+ & NCS YES 60 35

in real-time. One decade ago, Langendoen et al [60] wrote
a foundational paper listing everything that went wrong in
a precision agricultural deployment similar to our use case,
which includes board failure, batteries running out, etc. What
went right this time, is that the field of low-power devices for
IoT applications has substantially evolved and has radically
changed in that decade. However, although IoT technology
has successfully transitioned from the academic to the com-
mercial world, when uncommon use cases are considered,
the development and deployment of applications still require
accurate customization and complex integration activities.

The second lesson learnt concerns the key role played by
the experiments to identify the best HW/SW configuration
for this kind of application. Edge computing and IoT are the
right technologies for AI-based applications, and using them
makes a huge monetary difference. Moreover, as demon-
strated throughout this work, Edge-AI technology is ready
for use, but the deployment of innovative applications is still
far from being easy and straightforward.

The third lesson learnt was about the architectural design
of the Intelligent Animal Repelling System and, more specif-
ically, the reliability of the activity detection mechanism.
In some instances, when the PIR sensor misses detecting
the movement of an ungulate, the device is configured in
such a way that the camera acts as a backup in initiating
the detection of the ungulate. In this case, the PIR sensor
is not used and the real-time animal detection system on
the embedded system is executed when the camera detects
a target. Based on the category of the ungulate detected,
the edge computing device executes its DNN software to
identify the target, and if an animal is detected, it sends back
a message to the Animal Repelling Device including the type
of ultrasound to be generated according to the category of the
animal. The "activity" message is also transmitted from the
repeller device via LoRa to the LoRa gateway, which then
forwards the packet to the TTN server.

Finally, this work delivers an innovative, perfectly working
system that could be integrated with other HW devices and
SW modules, thus opening the way to the introduction of
unprecedented applications and services, not only in Smart
Agriculture, that take advantage of both open hardware and
cognitive approaches.
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