240 research outputs found

    Investigating the Effectiveness, Acceptability and Impact on Healthcare Usage of Providing a Cognitive-Behavioural Based Psychological Therapy Service for Patients with Primary Antibody Deficiency

    Get PDF
    PURPOSE: Patients with primary antibody deficiency report poorer quality of life and higher rates of anxiety and depression than the general population. Cognitive-behavioral therapy has been shown to be a valuable treatment for patients with other long-term physical health conditions, improving well-being and enabling them to manage their symptoms more effectively. The aim of this project was to establish the feasibility and effectiveness of providing cognitive-behavioral based therapy to patients with primary antibody deficiency. METHODS: Forty-four patients completed a course of psychological therapy. Participants completed a series of self-report measures examining psychological and physical health, and service usage, prior to starting treatment and following their final session. They also provided feedback on their experience of treatment. RESULTS: Patients showed improvements in anxiety, depression, insomnia and fatigue. There was a high level of acceptability of the service and the potential for long-term cost savings to the NHS. CONCLUSION: Psychological therapy based on the cognitive-behavioral model of treatment appears to be a valuable treatment for patients with primary antibody deficiency and comorbid mental health difficulties

    Recommendations for the management of secondary hypogammaglobulinaemia due to B cell targeted therapies in autoimmune rheumatic diseases

    Get PDF
    OBJECTIVES: The association of B cell targeted therapies with development of hypogammaglobulinaemia and infection is increasingly recognized. Our aim was to develop consensus recommendations for immunoglobulin replacement therapy for management of hypogammaglobulinaemia following B cell targeted therapies in autoimmune rheumatic diseases. // METHODS: A modified Delphi exercise involved a 17-member Taskforce committee, consisting of immunologists, rheumatologists, nephrologists, haematologists, a gastroenterologist, an immunology specialist nurse and a patient representative. The first round identified the most pertinent topics to address in the recommendations. A search string was agreed upon for the identification of publications in PubMed focusing on these areas, for a systematic literature review. Original data was presented from this review to the Taskforce committee. Recommendations from the British Society for Rheumatology, the UK Department of Health, EULAR, the ACR, and the American Academy of Allergy, Asthma, and Immunology were also reviewed. The evidence was discussed in a face-to-face meeting to formulate recommendation statements. The levels of evidence and statements were graded according to Scottish Intercollegiate Guidelines Network methodology. // RESULTS: Three overarching principles, eight recommendation statements and a research agenda were formulated. The Taskforce committee voted on these statements, achieving 82–100% agreement for each recommendation. The strength of the recommendations was restricted by the low quality of the available evidence, with no randomized controlled trial data. The recommendations cover risk factors, monitoring, referral for hypogammaglobulinaemia; indications, dosage and discontinuation of immunoglobulin replacement therapy. // CONCLUSION: These are the first recommendations specifically formulated for B cell targeted therapies related to hypogammaglobulinaemia in autoimmune rheumatic diseases. The recommendations are to aid health-care professionals with clinical decision making for patients with hypogammaglobulinaemia

    Finding the needle in the haystack: why high-throughput screening is good for your health

    Get PDF
    High-throughput screening is an essential component of the toolbox of modern technologies that improve speed and efficiency in contemporary cancer drug development. This is particularly important as we seek to exploit, for maximum therapeutic benefit, the large number of new molecular targets emerging from the Human Genome Project and cancer genomics. Screening of diverse collections of low molecular weight compounds plays a key role in providing chemical starting points for iterative optimisation by medicinal chemistry. Examples of successful drug discovery programmes based on high-throughput screening are described, and these offer potential in the treatment of breast cancer and other malignancies

    Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.

    Get PDF
    New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved

    Exploring Older Adult Susceptibility to Fraudulent Computer Pop-Up Interruptions

    Get PDF
    © 2019, Springer International Publishing AG, part of Springer Nature. The proliferation of Internet connectivity and accessibility has been accompanied by an increase in cyber-threats, including fraudulent communications. Fake computer updates, which attempt to persuade people to download malicious software by mimicking trusted brands and/or instilling urgency, are one way in which fraudsters try to infiltrate systems. A recent study of young university students (M 18.52-years) found that when such pop-ups interrupt a demanding cognitive task, participants spent little time viewing them and were more likely to miss suspicious cues and accept these updates compared to when they were viewed without the pressure to resume a suspended task [1]. The aim of the current experiment was to test an older adult sample (N = 29, all >60 years) using the same paradigm. We predicted that they would be more susceptible to malevolent pop-ups [2]; trusting them more than younger adults (e.g., [3]), and would attempt to resume the interrupted task faster to limit forgetting of encoded items. Phase 1 involved serial recall memory trials interrupted by genuine, mimicked, and low authority pop-ups. During phase 2, participants rated messages with unlimited time and gave reasons for their decisions. It was found that more than 70% of mimicked and low authority pop-ups were accepted in Phase 1 vs ~80% genuine pop-ups (and these were all approximately 10% higher than [1]). This was likely due to a greater tendency to ignore or miss suspicious content when performing under pressure, despite spending longer with messages and reporting high awareness of scam techniques than younger adults. Older adult participants were more suspicious during Phase 2 performing comparably to the younger adults in [1]. Factors that may impact older adult decisions relating to fraudulent computer communications are discussed, as well as theoretical and practical implications

    Computational analyses of eukaryotic promoters

    Get PDF
    Computational analysis of eukaryotic promoters is one of the most difficult problems in computational genomics and is essential for understanding gene expression profiles and reverse-engineering gene regulation network circuits. Here I give a basic introduction of the problem and recent update on both experimental and computational approaches. More details may be found in the extended references. This review is based on a summer lecture given at Max Planck Institute at Berlin in 2005

    SARS-CoV-2 Vaccine Responses in Individuals with Antibody Deficiency: Findings from the COV-AD Study

    Get PDF
    BACKGROUND: Vaccination prevents severe morbidity and mortality from COVID-19 in the general population. The immunogenicity and efficacy of SARS-CoV-2 vaccines in patients with antibody deficiency is poorly understood. OBJECTIVES: COVID-19 in patients with antibody deficiency (COV-AD) is a multi-site UK study that aims to determine the immune response to SARS-CoV-2 infection and vaccination in patients with primary or secondary antibody deficiency, a population that suffers from severe and recurrent infection and does not respond well to vaccination. METHODS: Individuals on immunoglobulin replacement therapy or with an IgG less than 4 g/L receiving antibiotic prophylaxis were recruited from April 2021. Serological and cellular responses were determined using ELISA, live-virus neutralisation and interferon gamma release assays. SARS-CoV-2 infection and clearance were determined by PCR from serial nasopharyngeal swabs. RESULTS: A total of 5.6% (n = 320) of the cohort reported prior SARS-CoV-2 infection, but only 0.3% remained PCR positive on study entry. Seropositivity, following two doses of SARS-CoV-2 vaccination, was 54.8% (n = 168) compared with 100% of healthy controls (n = 205). The magnitude of the antibody response and its neutralising capacity were both significantly reduced compared to controls. Participants vaccinated with the Pfizer/BioNTech vaccine were more likely to be seropositive (65.7% vs. 48.0%, p = 0.03) and have higher antibody levels compared with the AstraZeneca vaccine (IgGAM ratio 3.73 vs. 2.39, p = 0.0003). T cell responses post vaccination was demonstrable in 46.2% of participants and were associated with better antibody responses but there was no difference between the two vaccines. Eleven vaccine-breakthrough infections have occurred to date, 10 of them in recipients of the AstraZeneca vaccine. CONCLUSION: SARS-CoV-2 vaccines demonstrate reduced immunogenicity in patients with antibody deficiency with evidence of vaccine breakthrough infection

    Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells

    Get PDF
    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-β, other virus defence genes, and cytokine and chemokine genes related to the innate and the adaptive immune response. By contrast, B. bifidum Z9 up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the Th1-promoting genes induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a transcription factor regulating the activation of JNK, was one of the few genes only induced by B. bifidum Z9. Neutralization of IFN-β abrogated L. acidophilus NCFM-induced expression of Th1-skewing genes, and blocking of the JNK pathway completely inhibited the expression of IFN-β. Our results indicate that B. bifidum Z9 actively inhibits the expression of genes related to the adaptive immune system in murine dendritic cells and that JPD2 via blocking of IFN-β plays a central role in this regulatory mechanism

    NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models

    Get PDF
    INTRODUCTION:Heat shock protein 90 (HSP90) is a key component of a multichaperone complex involved in the post-translational folding of a large number of client proteins, many of which play essential roles in tumorigenesis. HSP90 has emerged in recent years as a promising new target for anticancer therapies.METHODS:The concentrations of the HSP90 inhibitor NVP-AUY922 required to reduce cell numbers by 50% (GI50 values) were established in a panel of breast cancer cell lines and patient-derived human breast tumors. To investigate the properties of the compound in vivo, the pharmacokinetic profile, antitumor effect, and dose regimen were established in a BT-474 breast cancer xenograft model. The effect on HSP90-p23 complexes, client protein degradation, and heat shock response was investigated in cell culture and breast cancer xenografts by immunohistochemistry, Western blot analysis, and immunoprecipitation.RESULTS:We show that the novel small molecule HSP90 inhibitor NVP-AUY922 potently inhibits the proliferation of human breast cancer cell lines with GI50 values in the range of 3 to 126 nM. NVP-AUY922 induced proliferative inhibition concurrent with HSP70 upregulation and client protein depletion � hallmarks of HSP90 inhibition. Intravenous acute administration of NVP-AUY922 to athymic mice (30 mg/kg) bearing subcutaneous BT-474 breast tumors resulted in drug levels in excess of 1,000 times the cellular GI50 value for about 2 days. Significant growth inhibition and good tolerability were observed when the compound was administered once per week. Therapeutic effects were concordant with changes in pharmacodynamic markers, including HSP90-p23 dissociation, decreases in ERBB2 and P-AKT, and increased HSP70 protein levels.CONCLUSION:NVP-AUY922 is a potent small molecule HSP90 inhibitor showing significant activity against breast cancer cells in cellular and in vivo settings. On the basis of its mechanism of action, preclinical activity profile, tolerability, and pharmaceutical properties, the compound recently has entered clinical phase I breast cancer trials

    The Spin Structure of the Nucleon

    Full text link
    We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure
    • …
    corecore