6,815 research outputs found

    The timing of death in patients with tuberculosis who die during anti-tuberculosis treatment in Andhra Pradesh, South India

    Get PDF
    Background: India has 2.0 million estimated tuberculosis (TB) cases per annum with an estimated 280,000 TBrelated deaths per year. Understanding when in the course of TB treatment patients die is important for determining the type of intervention to be offered and crucially when this intervention should be given. The objectives of the current study were to determine in a large cohort of TB patients in India:- i) treatment outcomes including the number who died while on treatment, ii) the month of death and iii) characteristics associated with “early” death, occurring in the initial 8 weeks of treatment. Methods: This was a retrospective study in 16 selected Designated Microscopy Centres (DMCs) in Hyderabad, Krishna and Adilabad districts of Andhra Pradesh, South India. A review was performed of treatment cards and medical records of all TB patients (adults and children) registered and placed on standardized anti-tuberculosis treatment from January 2005 to September 2009. Results: There were 8,240 TB patients (5183 males) of whom 492 (6%) were known to have died during treatment. Case-fatality was higher in those previously treated (12%) and lower in those with extra-pulmonary TB (2%). There was an even distribution of deaths during anti-tuberculosis treatment, with 28% of all patients dying in the first 8 weeks of treatment. Increasing age and new as compared to recurrent TB disease were significantly associated with “early death”. Conclusion: In this large cohort of TB patients, deaths occurred with an even frequency throughout anti-TB treatment. Reasons may relate to i) the treatment of the disease itself, raising concerns about drug adherence, quality of anti-tuberculosis drugs or the presence of undetected drug resistance and ii) co-morbidities, such as HIV/ AIDS and diabetes mellitus, which are known to influence mortality. More research in this area from prospective and retrospective studies is needed

    Ab initio prediction of Boron compounds arising from Borozene: Structural and electronic properties

    Get PDF
    Structure and electronic properties of two unusual boron clusters obtained by fusion of borozene rings has been studied by means of first principles calculations, based on the generalized-gradient approximation of the density functional theory, and the semiempirical tight-binding method was used for the transport calculations. The role of disorder has also been considered with single vacancies and substitutional atoms. Results show that the pure boron clusters are topologically planar and characterized by (3c-2e) bonds, which can explain, together with the aromaticity (estimated by means of NICS), the remarkable cohesive energy values obtained. Such feature makes these systems competitive with the most stable boron clusters to date. On the contrary, the introduction of impurities compromises stability and planarity in both cases. The energy gap values indicate that these clusters possess a semiconducting character, while when the larger system is considered, zero-values of the density of states are found exclusively within the HOMO-LUMO gap. Electron transport calculations within the Landauer formalism confirm these indications, showing semiconductor-like low bias differential conductance for these stuctures. Differences and similarities with Carbon clusters are highlighted in the discussion.Comment: 10 pages, 2 tables, 5 figure

    Electrical detection of magnetic skyrmions by non-collinear magnetoresistance

    Full text link
    Magnetic skyrmions are localised non-collinear spin textures with high potential for future spintronic applications. Skyrmion phases have been discovered in a number of materials and a focus of current research is the preparation, detection, and manipulation of individual skyrmions for an implementation in devices. Local experimental characterization of skyrmions has been performed by, e.g., Lorentz microscopy or atomic-scale tunnel magnetoresistance measurements using spin-polarised scanning tunneling microscopy. Here, we report on a drastic change of the differential tunnel conductance for magnetic skyrmions arising from their non-collinearity: mixing between the spin channels locally alters the electronic structure, making a skyrmion electronically distinct from its ferromagnetic environment. We propose this non-collinear magnetoresistance (NCMR) as a reliable all-electrical detection scheme for skyrmions with an easy implementation into device architectures

    Photometric Properties of Void Galaxies in the Sloan Digital Sky Survey DR7 Data Release

    Full text link
    Using the sample presented in Pan:2011, we analyse the photometric properties of 88,794 void galaxies and compare them to galaxies in higher density environments with the same absolute magnitude distribution. In Pan et al. (2011), we found a total of 1054 dynamically distinct voids in the SDSS with radius larger than 10h^-1 Mpc. The voids are underdense, with delta rho/rho < -0.9 in their centers. Here we study the photometric properties of these void galaxies. We look at the u - r colours as an indication of star formation activity and the inverse concentration index as an indication of galaxy type. We find that void galaxies are statistically bluer than galaxies found in higher density environments with the same magnitude distribution. We examine the colours of the galaxies as a function of magnitude, and we fit each colour distribution with a double-Gaussian model for the red and blue subpopulations. As we move from bright to dwarf galaxies, the population of red galaxies steadily decreases and the fraction of blue galaxies increases in both voids and walls, however the fraction of blue galaxies in the voids is always higher and bluer than in the walls. We also split the void and wall galaxies into samples depending on galaxy type. We find that late type void galaxies are bluer than late type wall galaxies and the same holds for early galaxies. We also find that early type, dwarf void galaxies are blue in colour. We also study the properties of void galaxies as a function of their distance from the center of the void. We find very little variation in the properties, such as magnitude, colour and type, of void galaxies as a function of their location in the void. The only exception is that the dwarf void galaxies may live closer to the center. The centers of voids have very similar density contrast and hence all void galaxies live in very similar density environments (ABRIDGED)Comment: 10 pages, 25 figure

    The science of clinical practice: disease diagnosis or patient prognosis? Evidence about "what is likely to happen" should shape clinical practice.

    Get PDF
    BACKGROUND: Diagnosis is the traditional basis for decision-making in clinical practice. Evidence is often lacking about future benefits and harms of these decisions for patients diagnosed with and without disease. We propose that a model of clinical practice focused on patient prognosis and predicting the likelihood of future outcomes may be more useful. DISCUSSION: Disease diagnosis can provide crucial information for clinical decisions that influence outcome in serious acute illness. However, the central role of diagnosis in clinical practice is challenged by evidence that it does not always benefit patients and that factors other than disease are important in determining patient outcome. The concept of disease as a dichotomous 'yes' or 'no' is challenged by the frequent use of diagnostic indicators with continuous distributions, such as blood sugar, which are better understood as contributing information about the probability of a patient's future outcome. Moreover, many illnesses, such as chronic fatigue, cannot usefully be labelled from a disease-diagnosis perspective. In such cases, a prognostic model provides an alternative framework for clinical practice that extends beyond disease and diagnosis and incorporates a wide range of information to predict future patient outcomes and to guide decisions to improve them. Such information embraces non-disease factors and genetic and other biomarkers which influence outcome. SUMMARY: Patient prognosis can provide the framework for modern clinical practice to integrate information from the expanding biological, social, and clinical database for more effective and efficient care

    Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.

    Get PDF
    A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease

    Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications

    Get PDF
    © The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio

    High Energy Neutrinos from Quasars

    Get PDF
    We review and clarify the assumptions of our basic model for neutrino production in the cores of quasars, as well as those modifications to the model subsequently made by other workers. We also present a revised estimate of the neutrino background flux and spectrum obtained using more recent empirical studies of quasars and their evolution. We compare our results with other thoeretical calculations and experimental upper limits on the AGN neutrino background flux. We also estimate possible neutrino fluxes from the jets of blazars detected recently by the EGRET experiment on the Compton Gamma Ray Observatory. We discuss the theoretical implications of these estimates.Comment: 14 pg., ps file (includes figures), To be published in Space Science Review

    Patient-centric trials for therapeutic development in precision oncology

    Get PDF
    An enhanced understanding of the molecular pathology of disease gained from genomic studies is facilitating the development of treatments that target discrete molecular subclasses of tumours. Considerable associated challenges include how to advance and implement targeted drug-development strategies. Precision medicine centres on delivering the most appropriate therapy to a patient on the basis of clinical and molecular features of their disease. The development of therapeutic agents that target molecular mechanisms is driving innovation in clinical-trial strategies. Although progress has been made, modifications to existing core paradigms in oncology drug development will be required to realize fully the promise of precision medicine

    Toxic Epidermal Necrolysis after Pemetrexed and Cisplatin for Non-Small Cell Lung Cancer in a Patient with Sharp Syndrome

    Get PDF
    Background: Pemetrexed is an antifolate drug approved for maintenance and second-line therapy, and, in combination with cisplatin, for first-line treatment of advanced nonsquamous non-small cell lung cancer. The side-effect profile includes fatigue, hematological and gastrointestinal toxicity, an increase in hepatic enzymes, sensory neuropathy, and pulmonary and cutaneous toxicity in various degrees. Case Report: We present the case of a 58-year-old woman with history of Sharp's syndrome and adenocarcinoma of the lung, who developed toxic epidermal necrolysis after the first cycle of pemetrexed, including erythema, bullae, extensive skin denudation, subsequent systemic inflammation and severe deterioration in general condition. The generalized skin lesions occurred primarily in the previous radiation field and responded to immunosuppressive treatment with prednisone. Conclusion: Although skin toxicity is a well-known side effect of pemetrexed, severe skin reactions after pemetrexed administration are rare. Caution should be applied in cases in which pemetrexed is given subsequent to radiation therapy, especially in patients with pre-existing skin diseases
    corecore