4,162 research outputs found
Maze solvers demystified and some other thoughts
There is a growing interest towards implementation of maze solving in
spatially-extended physical, chemical and living systems. Several reports of
prototypes attracted great publicity, e.g. maze solving with slime mould and
epithelial cells, maze navigating droplets. We show that most prototypes
utilise one of two phenomena: a shortest path in a maze is a path of the least
resistance for fluid and current flow, and a shortest path is a path of the
steepest gradient of chemoattractants. We discuss that substrates with
so-called maze-solving capabilities simply trace flow currents or chemical
diffusion gradients. We illustrate our thoughts with a model of flow and
experiments with slime mould. The chapter ends with a discussion of experiments
on maze solving with plant roots and leeches which show limitations of the
chemical diffusion maze-solving approach.Comment: This is a preliminary version of the chapter to be published in
Adamatzky A. (Ed.) Shortest path solvers. From software to wetware. Springer,
201
Recommended from our members
Evaporation of pinned droplets containing polymer - an examination of the important groups controlling final shape
Controlling the final shape resulting from evaporation of pinned droplets containing polymer, is important in the fabrication of P-OLED displays by inkjet printing. Typically, a coffee - ring shape arises, due to the pinning and associated outward capillary flow. For operational reasons, this is undesirable – a flat topography is required. The aim of this work is to understand the important groups governing the shape, to provide a practical guide to ink selection. The theory presented is based on a thin-film lubrication model. The governing equations are solved numerically and continuously track the lateral progression of a liquid/gel front. A large capillary number or large ratio of initial to maximal polymer volume fraction can suppress the coffee-ring. White light interferometry is used to confirm these findings experimentally.This research has been funded by the Engineering & Physical Sciences Research Council, UK and CASE studentship funding from Cambridge Display Technology Ltd., UK. The authors thank Dr Mark Dowling of Cambridge Display Technology Ltd., for help with the experimental setup.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/aic.14777
The integrated dynamic land use and transport model MARS
Cities worldwide face problems like congestion or outward migration of businesses. The involved transport and land use interactions require innovative tools. The dynamic Land Use and Transport Interaction model MARS (Metropolitan Activity Relocation Simulator) is part of a structured decision making process. Cities are seen as self organizing systems. MARS uses Causal Loop Diagrams from Systems Dynamics to explain cause and effect relations. MARS has been benchmarked against other published models. A user friendly interface has been developed to support decision makers. Its usefulness was tested through workshops in Asia. This paper describes the basis, capabilities and uses of MARS
A solid state light-matter interface at the single photon level
Coherent and reversible mapping of quantum information between light and
matter is an important experimental challenge in quantum information science.
In particular, it is a decisive milestone for the implementation of quantum
networks and quantum repeaters. So far, quantum interfaces between light and
atoms have been demonstrated with atomic gases, and with single trapped atoms
in cavities. Here we demonstrate the coherent and reversible mapping of a light
field with less than one photon per pulse onto an ensemble of 10 millions atoms
naturally trapped in a solid. This is achieved by coherently absorbing the
light field in a suitably prepared solid state atomic medium. The state of the
light is mapped onto collective atomic excitations on an optical transition and
stored for a pre-programmed time up of to 1 mu s before being released in a
well defined spatio-temporal mode as a result of a collective interference. The
coherence of the process is verified by performing an interference experiment
with two stored weak pulses with a variable phase relation. Visibilities of
more than 95% are obtained, which demonstrates the high coherence of the
mapping process at the single photon level. In addition, we show experimentally
that our interface allows one to store and retrieve light fields in multiple
temporal modes. Our results represent the first observation of collective
enhancement at the single photon level in a solid and open the way to multimode
solid state quantum memories as a promising alternative to atomic gases.Comment: 5 pages, 5 figures, version submitted on June 27 200
Anterior joint capsule of the normal hip and in children with transient synovitis: US study with anatomic and histologic correlation
PURPOSE: To study the anatomic components of the anterior joint capsule of
the normal hip and in children with transient synovitis. MATERIALS AND
METHODS: Six cadaveric specimens were imaged with ultrasonography (US)
with special attention to the anterior joint capsule. Subsequently, two
specimens were analyzed histologically. These anatomic findings were
correlated with the US findings in 58 healthy children and 105 children
with unilateral transient synovitis. RESULTS: The anterior joint capsule
comprises an anterior and posterior layer, mainly composed of fibrous
tissue, lined by only a minute synovial membrane. Both fibrous layers were
identified separately at US in 98 of 116 (84%) hips of healthy subjects
and in all hips with transient synovitis. Overall, the anterior layer was
thicker than the posterior layer. In transient synovitis compared with
normal hips, no significant thickening of both layers was present (P = .24
and .57 for the anterior and posterior layers, respectively). Normal
variants include plicae, local thickening of the capsule, and
pseudodiverticula. CONCLUSION: Increased thickness of the anterior joint
capsule in transient synovitis is caused entirely by effusion. There is no
US evidence for additional capsule swelling or synovial hypertrophy
Haptics for the development of fundamental rhythm skills, including multi-limb coordination
This chapter considers the use of haptics for learning fundamental rhythm skills, including skills that depend on multi-limb coordination. Different sensory modalities have different strengths and weaknesses for the development of skills related to rhythm. For example, vision has low temporal resolution and performs poorly for tracking rhythms in real-time, whereas hearing is highly accurate. However, in the case of multi-limbed rhythms, neither hearing nor sight are particularly well suited to communicating exactly which limb does what and when, or how the limbs coordinate. By contrast, haptics can work especially well in this area, by applying haptic signals independently to each limb. We review relevant theories, including embodied interaction and biological entrainment. We present a range of applications of the Haptic Bracelets, which are computer-controlled wireless vibrotactile devices, one attached to each wrist and ankle. Haptic pulses are used to guide users in playing rhythmic patterns that require multi-limb coordination. One immediate aim of the system is to support the development of practical rhythm skills and multi-limb coordination. A longer-term goal is to aid the development of a wider range of fundamental rhythm skills including recognising, identifying, memorising, retaining, analysing, reproducing, coordinating, modifying and creating rhythms – particularly multi-stream (i.e. polyphonic) rhythmic sequences. Empirical results are presented. We reflect on related work, and discuss design issues for using haptics to support rhythm skills. Skills of this kind are essential not just to drummers and percussionists but also to keyboards players, and more generally to all musicians who need a firm grasp of rhythm
Operational research in Malawi: making a difference with cotrimoxazole preventive therapy in patients with tuberculosis and HIV.
BACKGROUND: In Malawi, high case fatality rates in patients with tuberculosis, who were also co-infected with HIV, and high early death rates in people living with HIV during the initiation of antiretroviral treatment (ART) adversely impacted on treatment outcomes for the national tuberculosis and ART programmes respectively. This article i) discusses the operational research that was conducted in the country on cotrimoxazole preventive therapy, ii) outlines the steps that were taken to translate these findings into national policy and practice, iii) shows how the implementation of cotrimoxazole preventive therapy for both TB patients and HIV-infected patients starting ART was associated with reduced death rates, and iv) highlights lessons that can be learnt for other settings and interventions. DISCUSSION: District and facility-based operational research was undertaken between 1999 and 2005 to assess the effectiveness of cotrimoxazole preventive therapy in reducing death rates in TB patients and subsequently in patients starting ART under routine programme conditions. Studies demonstrated significant reductions in case fatality in HIV-infected TB patients receiving cotrimoxazole and in HIV-infected patients about to start ART. Following the completion of research, the findings were rapidly disseminated nationally at stakeholder meetings convened by the Ministry of Health and internationally through conferences and peer-reviewed scientific publications. The Ministry of Health made policy changes based on the available evidence, following which there was countrywide distribution of the updated policy and guidelines. Policy was rapidly moved to practice with the development of monitoring tools, drug procurement and training packages. National programme performance improved which showed a significant decrease in case fatality rates in TB patients as well as a reduction in early death in people with HIV starting ART. SUMMARY: Key lessons for moving this research endeavour through to policy and practice were the importance of placing operational research within the programme, defining relevant questions, obtaining "buy-in" from national programme staff at the beginning of projects and having key actors or "policy entrepreneurs" to push forward the policy-making process. Ultimately, any change in policy and practice has to benefit patients, and the ultimate judge of success is whether treatment outcomes improve or not
Superconducting nanowire photon number resolving detector at telecom wavelength
The optical-to-electrical conversion, which is the basis of optical
detectors, can be linear or nonlinear. When high sensitivities are needed
single-photon detectors (SPDs) are used, which operate in a strongly nonlinear
mode, their response being independent of the photon number. Nevertheless,
photon-number resolving (PNR) detectors are needed, particularly in quantum
optics, where n-photon states are routinely produced. In quantum communication,
the PNR functionality is key to many protocols for establishing, swapping and
measuring entanglement, and can be used to detect photon-number-splitting
attacks. A linear detector with single-photon sensitivity can also be used for
measuring a temporal waveform at extremely low light levels, e.g. in
long-distance optical communications, fluorescence spectroscopy, optical
time-domain reflectometry. We demonstrate here a PNR detector based on parallel
superconducting nanowires and capable of counting up to 4 photons at
telecommunication wavelengths, with ultralow dark count rate and high counting
frequency
Patient-centric trials for therapeutic development in precision oncology
An enhanced understanding of the molecular pathology of disease gained from genomic studies is facilitating the development of treatments that target discrete molecular subclasses of tumours. Considerable associated challenges include how to advance and implement targeted drug-development strategies. Precision medicine centres on delivering the most appropriate therapy to a patient on the basis of clinical and molecular features of their disease. The development of therapeutic agents that target molecular mechanisms is driving innovation in clinical-trial strategies. Although progress has been made, modifications to existing core paradigms in oncology drug development will be required to realize fully the promise of precision medicine
Higher Derivative Corrections to R-charged Black Holes: Boundary Counterterms and the Mass-Charge Relation
We carry out the holographic renormalization of Einstein-Maxwell theory with
curvature-squared corrections. In particular, we demonstrate how to construct
the generalized Gibbons-Hawking surface term needed to ensure a perturbatively
well-defined variational principle. This treatment ensures the absence of ghost
degrees of freedom at the linearized perturbative order in the
higher-derivative corrections. We use the holographically renormalized action
to study the thermodynamics of R-charged black holes with higher derivatives
and to investigate their mass to charge ratio in the extremal limit. In five
dimensions, there seems to be a connection between the sign of the higher
derivative couplings required to satisfy the weak gravity conjecture and that
violating the shear viscosity to entropy bound. This is in turn related to
possible constraints on the central charges of the dual CFT, in particular to
the sign of c-a.Comment: 30 pages. v2: references added, some equations simplifie
- …
