1,987 research outputs found

    Metabolic oscillations on the circadian time scale in Drosophila cells lacking clock genes

    Get PDF
    Circadian rhythms are cell‐autonomous biological oscillations with a period of about 24 h. Current models propose that transcriptional feedback loops are the primary mechanism for the generation of circadian oscillations. Within this framework, Drosophila S2 cells are regarded as “non‐rhythmic” cells, as they do not express several canonical circadian components. Using an unbiased multi‐omics approach, we made the surprising discovery that Drosophila S2 cells do in fact display widespread daily rhythms. Transcriptomics and proteomics analyses revealed that hundreds of genes and their products, and in particular metabolic enzymes, are rhythmically expressed in a 24‐h cycle. Metabolomics analyses extended these findings and demonstrate that central carbon metabolism and amino acid metabolism are core metabolic pathways driven by protein rhythms. We thus demonstrate that 24‐h metabolic oscillations, coupled to gene and protein cycles, take place in nucleated cells without the contribution of any known circadian regulators. These results therefore suggest a reconsideration of existing models of the clockwork in Drosophila and other eukaryotic systems.Mol Syst Biol. (2018) 14: e837

    JAK2 V617F Mutation Prevalence in Myeloproliferative Neoplasms in Pernambuco, Brazil

    Get PDF
    Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq)Background: The JAK2 V617F mutation is associated with three myeloproliferative neoplasms (MPNs): polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). It generates an unregulated clonal hematopoietic progenitor and leads to abnormal increased proliferation of one or more myeloid lineages. Subjects bearing this mutation may present more frequently with complications such as thrombosis and bleeding, and no specific treatment has yet been developed for BCR-ABL-negative JAK2 V617F-negative MPNs. Aims: To determine the prevalence of JAK2 V617F in MPNs in Pernambuco, Brazil, and to compare it with previous studies. Material and Methods: 144 blood samples were collected at the Hospital of Hematology of the HEMOPE Foundation and were genotyped by polymerase chain reaction-restriction fragment length polymorphism with BsaXI enzymatic digestion. Results and Discussion: 88% (46/52) of the patients with PV, 47% (39/81) with ET, and 77% (8/11) with PMF were positive for JAK2 V617F, while more than 35% of the individuals were JAK2 V617F-negative, confirming a high prevalence of this abnormality in MPNs, more frequently with a low mutated allele burden, similar to what has been reported in other Western countries, despite differences among methods used to detect this mutation. Screening for JAK2 V617F may allow specific management of these diseases with JAK2 inhibitors in the future and highlights the need for further studies on the pathogenesis of BCR-ABL-negative JAK2 V617F-negative MPNs.167802805Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq)Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE)Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq

    The effect of resistance training interventions on weight status in youth:a meta-analysis

    Get PDF
    Abstract Background There has been a rise in research into obesity prevention and treatment programmes in youth, including the effectiveness of resistance-based exercise. The purpose of this meta-analysis was to examine the effect of resistance training interventions on weight status in youth. Methods Meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and was registered on PROSPERO (registration number CRD42016038365). Eligible studies were from English language peer-reviewed published articles. Searches were conducted in seven databases between May 2016 and June 2017. Studies were included that examined the effect of resistance training on weight status in youth, with participants of school age (5–18 years). Results There were 24 complete sets of data from 18 controlled trials (CTs) which explored 8 outcomes related to weight status. Significant, small effect sizes were identified for body fat% (Hedges’ g = 0.215, 95% CI 0.059 to 0.371, P = 0.007) and skinfolds (Hedges’ g = 0.274, 95% CI 0.066 to 0.483, P = 0.01). Effect sizes were not significant for: body mass (Hedges’ g = 0.043, 95% CI − 0.103 to 0.189, P = 0.564), body mass index (Hedges’ g = 0.024, 95% CI − 0.205 to 0.253, P = 0.838), fat-free mass (Hedges’ g = 0.073, 95% CI − 0.169 to 0.316, P = 0.554), fat mass (Hedges’ g = 0.180, 95% CI − 0.090 to 0.451, P = 0.192), lean mass (Hedges’ g = 0.089, 95% CI − 0.122 to 0.301, P = 0.408) or waist circumference (Hedges’ g = 0.209, 95% CI − 0.075 to 0.494, P = 0.149). Conclusions The results of this meta-analysis suggest that an isolated resistance training intervention may have an effect on weight status in youth. Overall, more quality research should be undertaken to investigate the impact of resistance training in youth as it could have a role to play in the treatment and prevention of obesity

    The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum

    Get PDF
    The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders
    • 

    corecore