78 research outputs found

    A quantitatively-modeled homozygosity mapping algorithm, qHomozygosityMapping, utilizing whole genome single nucleotide polymorphism genotyping data

    Get PDF
    Homozygosity mapping is a powerful procedure that is capable of detecting recessive disease-causing genes in a few patients from families with a history of inbreeding. We report here a homozygosity mapping algorithm for high-density single nucleotide polymorphism arrays that is able to (i) correct genotyping errors, (ii) search for autozygous segments genome-wide through regions with runs of homozygous SNPs, (iii) check the validity of the inbreeding history, and (iv) calculate the probability of the disease-causing gene being located in the regions identified. The genotyping error correction restored an average of 94.2% of the total length of all regions with run of homozygous SNPs, and 99.9% of the total length of them that were longer than 2 cM. At the end of the analysis, we would know the probability that regions identified contain a disease-causing gene, and we would be able to determine how much effort should be devoted to scrutinizing the regions. We confirmed the power of this algorithm using 6 patients with Siiyama-type α1-antitrypsin deficiency, a rare autosomal recessive disease in Japan. Our procedure will accelerate the identification of disease-causing genes using high-density SNP array data

    Substrate Profiling of Tobacco Etch Virus Protease Using a Novel Fluorescence-Assisted Whole-Cell Assay

    Get PDF
    Site-specific proteolysis of proteins plays an important role in many cellular functions and is often key to the virulence of infectious organisms. Efficient methods for characterization of proteases and their substrates will therefore help us understand these fundamental processes and thereby hopefully point towards new therapeutic strategies. Here, a novel whole-cell in vivo method was used to investigate the substrate preference of the sequence specific tobacco etch virus protease (TEVp). The assay, which utilizes protease-mediated intracellular rescue of genetically encoded short-lived fluorescent substrate reporters to enhance the fluorescence of the entire cell, allowed subtle differences in the processing efficiency of closely related substrate peptides to be detected. Quantitative screening of large combinatorial substrate libraries, through flow cytometry analysis and cell sorting, enabled identification of optimal substrates for TEVp. The peptide, ENLYFQG, identical to the protease's natural substrate peptide, emerged as a strong consensus cleavage sequence, and position P3 (tyrosine, Y) and P1 (glutamine, Q) within the substrate peptide were confirmed as being the most important specificity determinants. In position P1′, glycine (G), serine (S), cysteine (C), alanine (A) and arginine (R) were among the most prevalent residues observed, all known to generate functional TEVp substrates and largely in line with other published studies stating that there is a strong preference for short aliphatic residues in this position. Interestingly, given the complex hydrogen-bonding network that the P6 glutamate (E) is engaged in within the substrate-enzyme complex, an unexpectedly relaxed residue preference was revealed for this position, which has not been reported earlier. Thus, in the light of our results, we believe that our assay, besides enabling protease substrate profiling, also may serve as a highly competitive platform for directed evolution of proteases and their substrates

    Association between two distinct executive tasks in schizophrenia: a functional transcranial Doppler sonography study

    Get PDF
    BACKGROUND: Schizophrenia is a severe mental disorder involving impairments in executive functioning, which are important cognitive processes that can be assessed by planning tasks such as the Stockings of Cambridge (SOC), and tasks of rule learning/abstraction such as the Wisconsin Card Sorting Test (WCST). We undertook this study to investigate the association between performance during separate phases of SOC and WCST, including mean cerebral blood flow velocity (MFV) measurements in chronic schizophrenia. METHODS: Functional transcranial Doppler sonography (fTCD) was used to assess bilateral MFV changes in the middle (MCA) and anterior (ACA) cerebral arteries. Twenty-two patients with chronic schizophrenia and 20 healthy subjects with similar sociodemographic characteristics performed SOC and WCST during fTCD measurements of the MCA and the ACA. The SOC was varied in terms of easy and difficult problems, and also in terms of separate phases, namely mental planning and movement execution. The WCST performance was assessed separately for maintaining set and set shifting. This allowed us to examine the impact of problem difficulty and the impact of separate phases of a planning task on distinct intervals of WCST. Simultaneous registration of MFV was carried out to investigate the linkage of brain perfusion during the tasks. RESULTS: In patients, slowing of movement execution during easy problems (SOC) was associated with slowing during maintaining set (WCST) (P < 0.01). In healthy subjects, faster planning and movement execution during predominantly difficult problems were associated with increased performance of WCST during set shifting (P < 0.01). In the MCA, patients showed a significant and positive correlation of MFV between movement execution and WCST (P < 0.01). CONCLUSION: The results of this study demonstrate performance and brain perfusion abnormalities in the association pattern of two different tasks of executive functioning in schizophrenia, and they support the notion that executive functions have a pathological functional correlate predominantly in the lateral hemispheres of the brain. This study also underpins the scientific potential of fTCD in assessing brain perfusion in patients with schizophrenia

    The Role of MMP7 and Its Cross-Talk with the FAS/FASL System during the Acquisition of Chemoresistance to Oxaliplatin

    Get PDF
    Background: The efficacy of oxaliplatin in cancer chemotherapy is limited by the development of drug resistance. MMP7 has been related to the loss of tumor cell response to cytotoxic agents although the exact mechanism is not fully understood. Moreover, MMP7 is an independent prognosis factor for survival in patients with colorectal cancer. The aim of the present study was to analyze the role of MMP7 and its cross-talk with the Fas/FasL system during the acquisition of oxaliplatin resistance in colon cancer cells. Principal Findings: For this purpose we have developed three different oxaliplatin-resistant cell lines (RHT29, RHCT116 p53+/+, RHCT116 p53−/−) from the parental HT29, HCT116 p53+/+ and HCT116 p53−/− colon cancer cells. MMP7 basal expression was higher in the resistant compared to the parental cell lines. MMP7 was also upregulated by oxaliplatin in both HT29 (p53 mutant) and RHCT116 p53−/− but not in the RHCT116 p53+/+. Inhibition of MMP by 1,10-phenantroline monohydrate or siRNA of MMP7 restores cell sensitivity to oxaliplatin-induced apoptosis in both HT29 and RHCT116 p53−/− but not in the RHCT116 p53+/+. Some of these effects are caused by alterations in Fas receptor. Fas is upregulated by oxaliplatin in colon cancer cells, however the RHT29 cells treated with oxaliplatin showed a 3.8-fold lower Fas expression at the cell surface than the HT29 cells. Decrease of Fas at the plasma membrane seems to be caused by MMP7 since its inhibition restores Fas levels. Moreover, functional analysis of Fas demonstrates that this receptor was less potent in inducing apoptosis in RHT29 cells and that its activation induces MAPK signaling in resistant cells. Conclusions: Taking together, these results suggest that MMP7 is related to the acquisition of oxaliplatin-resistance and that its inhibition restores drug sensitivity by increasing Fas receptor. Furthermore, Fas undergoes a change in its functionality in oxaliplatin-resistant cells inducing survival pathways instead of apoptotic signals

    An Event-Related fMRI Study of Phonological Verbal Working Memory in Schizophrenia

    Get PDF
    Background: While much is known about the role of prefrontal cortex (PFC) in working memory (WM) deficits of schizophrenia, the nature of the relationship between cognitive components of WM and brain activation patterns remains unclear. We aimed to elucidate the neural correlates of the maintenance component of verbal WM by examining correct and error trials with event-related fMRI. Methodology/Findings: Twelve schizophrenia patients (SZ) and thirteen healthy control participants (CO) performed a phonological delayed-matching-to-sample-task in which a memory set of three nonsense words was presented, followed by a 6-seconds delay after which a probe nonsense word appeared. Participants decided whether the probe matched one of the targets, and rated the confidence of their decision. Blood-oxygen-level-dependent (BOLD) activity during WM maintenance was analyzed in relation to performance (correct/error) and confidence ratings. Frontal and parietal regions exhibited increased activation on correct trials for both groups. Correct and error trials were further segregated into true memory, false memory, guess, and true error trials. True memory trials were associated with increased bilateral activation of frontal and parietal regions in both groups but only CO showed deactivation in PFC. There was very little maintenancerelated cortical activity during guess trials. False memory was associated with increased left frontal and parietal activation in both groups. Conclusion: These findings suggest that a wider network of frontal and parietal regions support WM maintenance in correct trials compared with error trials in both groups. Furthermore, a more extensive and dynamic pattern of recruitment of the frontal and parietal networks for true memory was observed in healthy controls compared with schizophrenia patients. These results underscore the value of parsing the sources of memory errors in fMRI studies because of the non-linear nature of the brain-behavior relationship, and suggest that group comparisons need to be interpreted in more specific behavioral contexts

    How to find simple and accurate rules for viral protease cleavage specificities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteases of human pathogens are becoming increasingly important drug targets, hence it is necessary to understand their substrate specificity and to interpret this knowledge in practically useful ways. New methods are being developed that produce large amounts of cleavage information for individual proteases and some have been applied to extract cleavage rules from data. However, the hitherto proposed methods for extracting rules have been neither easy to understand nor very accurate. To be practically useful, cleavage rules should be accurate, compact, and expressed in an easily understandable way.</p> <p>Results</p> <p>A new method is presented for producing cleavage rules for viral proteases with seemingly complex cleavage profiles. The method is based on orthogonal search-based rule extraction (OSRE) combined with spectral clustering. It is demonstrated on substrate data sets for human immunodeficiency virus type 1 (HIV-1) protease and hepatitis C (HCV) NS3/4A protease, showing excellent prediction performance for both HIV-1 cleavage and HCV NS3/4A cleavage, agreeing with observed HCV genotype differences. New cleavage rules (consensus sequences) are suggested for HIV-1 and HCV NS3/4A cleavages. The practical usability of the method is also demonstrated by using it to predict the location of an internal cleavage site in the HCV NS3 protease and to correct the location of a previously reported internal cleavage site in the HCV NS3 protease. The method is fast to converge and yields accurate rules, on par with previous results for HIV-1 protease and better than previous state-of-the-art for HCV NS3/4A protease. Moreover, the rules are fewer and simpler than previously obtained with rule extraction methods.</p> <p>Conclusion</p> <p>A rule extraction methodology by searching for multivariate low-order predicates yields results that significantly outperform existing rule bases on out-of-sample data, but are more transparent to expert users. The approach yields rules that are easy to use and useful for interpreting experimental data.</p

    Human DESC1 serine protease confers tumorigenic properties to MDCK cells and it is upregulated in tumours of different origin

    Get PDF
    Proteolysis of the extracellular matrix components plays a crucial role in the regulation of the cellular and physiological processes, and different pathologies have been associated with the loss or gain of function of proteolytic enzymes. DESC1 (differentially expressed in squamous cell carcinoma gene 1), a member of the TTSP (type II transmembrane serine protease) family of serine proteases, is an epithelial-specific enzyme that has been found downregulated in squamous cell carcinoma of the head and neck region. We describe new properties of DESC1 suggesting that this protease may be involved in the progression of some type of tumours. Thus, this enzyme hydrolyses some extracellular matrix components, such as fibronectin, gelatin or fibrinogen. Moreover, Madin–Darby canine kidney (MDCK) cells expressing exogenous human DESC1 acquire properties associated with tumour growth such as enhanced motility and an increase of tubular forms in a 3D collagen lattice following HGF treatment. Finally, we generated polyclonal anti-DESC1 antibodies and immunohistochemical analysis in tissues different from head and neck region indicated that this protease was overexpressed in tumours of diverse origins. Taken together, our results suggest that DESC1 could be considered as a potential therapeutic target in some type of tumours
    corecore