52 research outputs found

    TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discovery of heat-sensitive Transient Receptor Potential Vanilloid (TRPV) ion channels provided a potential molecular explanation for the perception of innocuous and noxious heat stimuli. TRPV1 has a significant role in acute heat nociception and inflammatory heat hyperalgesia. Yet, substantial innocuous and noxious heat sensitivity remains in TRPV1 knockout animals. Here we investigated the role of two related channels, TRPV3 and TRPV4, in these capacities. We studied TRPV3 knockout animals on both C57BL6 and 129S6 backgrounds, as well as animals deficient in both TRPV3 and TRPV4 on a C57BL6 background. Additionally, we assessed the contributions of TRPV3 and TRPV4 to acute heat nociception and inflammatory heat hyperalgesia during inhibition of TRPV1.</p> <p>Results</p> <p>TRPV3 knockout mice on the C57BL6 background exhibited no obvious alterations in thermal preference behavior. On the 129S6 background, absence of TRPV3 resulted in a more restrictive range of occupancy centered around cooler floor temperatures. TRPV3 knockout mice showed no deficits in acute heat nociception on either background. Mice deficient in both TRPV3 and TRPV4 on a C57BL6 background showed thermal preference behavior similar to wild-type controls on the thermal gradient, and little or no change in acute heat nociception or inflammatory heat hyperalgesia. Masking of TRPV1 by the TRPV1 antagonist JNJ-17203212 did not reveal differences between C57BL6 animals deficient in TRPV3 and TRPV4, compared to their wild-type counterparts.</p> <p>Conclusions</p> <p>Our results support the notion that TRPV3 and TRPV4 likely make limited and strain-dependent contributions to innocuous warm temperature perception or noxious heat sensation, even when TRPV1 is masked. These findings imply the existence of other significant mechanisms for heat perception.</p

    Thermal referral: evidence for a thermoceptive uniformity illusion without touch

    Get PDF
    When warm thermal stimulators are placed on the ring and index fingers of one hand, and a neutral-temperature stimulator on the middle finger, all three fingers feel warm. This illusion is known as thermal referral (TR). On one interpretation, the heterogenous thermal signals are overridden by homogenous tactile signals. This cross-modal thermo-tactile interaction could reflect a process of object recognition, based on the prior that many objects are thermally homogenous. Interestingly, the illusion was reported to disappear when the middle digit was lifted off the thermal stimulator, suggesting that tactile stimulation is necessary. However, no study has investigated whether purely thermal stimulation might induce TR, without any tactile object to which temperature can be attributed. We used radiant thermal stimulation to deliver purely thermal stimuli, which either were or were not accompanied by simultaneous touch. We found identical TR effects in both the original thermo-tactile condition, and in a purely thermoceptive condition where no tactile object was present. Control experiments ruled out explanations based on poor spatial discrimination of warm signals. Our purely thermoceptive results suggest that TR could reflect low-level organization of the thermoceptive pathway, rather than a cognitive intermodal modulation based on tactile object perception

    Interoception in anxiety and depression

    Get PDF
    We review the literature on interoception as it relates to depression and anxiety, with a focus on belief, and alliesthesia. The connection between increased but noisy afferent interoceptive input, self-referential and belief-based states, and top-down modulation of poorly predictive signals is integrated into a neuroanatomical and processing model for depression and anxiety. The advantage of this conceptualization is the ability to specifically examine the interface between basic interoception, self-referential belief-based states, and enhanced top-down modulation to attenuate poor predictability. We conclude that depression and anxiety are not simply interoceptive disorders but are altered interoceptive states as a consequence of noisily amplified self-referential interoceptive predictive belief states

    Audiotactile interactions in temporal perception

    Full text link
    corecore