40 research outputs found
Natural acetylation impacts carbohydrate recovery during deconstruction of Populus trichocarpa wood
The self-organizing fractal theory as a universal discovery method: the phenomenon of life
A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy
Detection of Differences in Surface-charge-associated Properties of Cells by Partition in Two-polymer Aqueous Phase Systems
Late recurrence of Castleman’s disease with mixed angiomyoid, histiocytic reticulum cell, follicular dendritic cell stroma-rich proliferations: a case report and review of the literature
The relationships between message passing, pairwise, Kermack–McKendrick and stochastic SIR epidemic models
We consider a very general stochastic model for an SIR epidemic on a network which allows an individual’s infectious period, and the time it takes to contact each of its neighbours after becoming infected, to be correlated. We write down the message passing system of equations for this model and prove, for the first time, that it has a unique feasible solution. We also generalise an earlier result by proving that this solution provides a rigorous upper bound for the expected epidemic size (cumulative number of infection events) at any fixed time t>0. We specialise these results to a homogeneous special case where the graph (network) is symmetric. The message passing system here reduces to just four equations. We prove that cycles in the network inhibit the spread of infection, and derive important epidemiological results concerning the final epidemic size and threshold behaviour for a major outbreak. For Poisson contact processes, this message passing system is equivalent to a non-Markovian pair approximation model, which we show has well-known pairwise models as special cases. We show further that a sequence of message passing systems, starting with the homogeneous one just described, converges to the deterministic Kermack–McKendrick equations for this stochastic model. For Poisson contact and recovery, we show that this convergence is monotone, from which it follows that the message passing system (and hence also the pairwise model) here provides a better approximation to the expected epidemic size at time t>0 than the Kermack–McKendrick model
