1,372 research outputs found

    Resummation of transverse energy in vector boson and Higgs boson production at hadron colliders

    Full text link
    We compute the resummed hadronic transverse energy (E_T) distribution due to initial-state QCD radiation in vector boson and Higgs boson production at hadron colliders. The resummed exponent, parton distributions and coefficient functions are treated consistently to next-to-leading order. The results are matched to fixed-order calculations at large E_T and compared with parton-shower Monte Carlo predictions at Tevatron and LHC energies.Comment: 24 pages, 15 figure

    Higgs Physics: Theory

    Full text link
    I review the theoretical aspects of the physics of Higgs bosons, focusing on the elements that are relevant for the production and detection at present hadron colliders. After briefly summarizing the basics of electroweak symmetry breaking in the Standard Model, I discuss Higgs production at the LHC and at the Tevatron, with some focus on the main production mechanism, the gluon-gluon fusion process, and summarize the main Higgs decay modes and the experimental detection channels. I then briefly survey the case of the minimal supersymmetric extension of the Standard Model. In a last section, I review the prospects for determining the fundamental properties of the Higgs particles once they have been experimentally observed.Comment: 21 pages, 15 figures. Talk given at the XXV International Symposium on Lepton Photon Interactions at High Energies (Lepton Photon 11), 22-27 August 2011, Mumbai, Indi

    New Physics Signals in Longitudinal Gauge Boson Scattering at the LHC

    Full text link
    We introduce a novel technique designed to look for signatures of new physics in vector boson fusion processes at the TeV scale. This functions by measuring the polarization of the vector bosons to determine the relative longitudinal to transverse production. In studying this ratio we can directly probe the high energy E^2-growth of longitudinal vector boson scattering amplitudes characteristic of models with non-Standard Model (SM) interactions. We will focus on studying models parameterized by an effective Lagrangian that include a light Higgs with non-SM couplings arising from TeV scale new physics associated with the electroweak symmetry breaking, although our technique can be used in more general scenarios. We will show that this technique is stable against the large uncertainties that can result from variations in the factorization scale, improving upon previous studies that measure cross section alone

    Next-to-leading order QCD corrections to Higgs boson production in association with a photon via weak-boson fusion at the LHC

    Get PDF
    Higgs boson production in association with a hard central photon and two forward tagging jets is expected to provide valuable information on Higgs boson couplings in a range where it is difficult to disentangle weak-boson fusion processes from large QCD backgrounds. We present next-to-leading order QCD corrections to Higgs production in association with a photon via weak-boson fusion at a hadron collider in the form of a flexible parton-level Monte Carlo program. The QCD corrections to integrated cross sections are found to be small for experimentally relevant selection cuts, while the shape of kinematic distributions can be distorted by up to 20% in some regions of phase space. Residual scale uncertainties at next-to-leading order are at the few-percent level.Comment: 17 pages, 7 figures, 1 tabl

    Vector boson pair production at the LHC

    Get PDF
    We present phenomenological results for vector boson pair production at the LHC, obtained using the parton-level next-to-leading order program MCFM. We include the implementation of a new process in the code, pp -> \gamma\gamma, and important updates to existing processes. We incorporate fragmentation contributions in order to allow for the experimental isolation of photons in \gamma\gamma, W\gamma, and Z\gamma production and also account for gluon-gluon initial state contributions for all relevant processes. We present results for a variety of phenomenological scenarios, at the current operating energy of \sqrt{s} = 7 TeV and for the ultimate machine goal, \sqrt{s} = 14 TeV. We investigate the impact of our predictions on several important distributions that enter into searches for new physics at the LHC.Comment: 35 pages, 14 figure

    Multiple Parton Interactions in Z+jets production at the LHC. A comparison of factorized and non--factorized double parton distribution functions

    Get PDF
    We examine the contribution of Multiple Parton Interactions to Z+n-jets production at the LHC, n=2,3,4, where the Z boson is assumed to decay leptonically. We compare the results obtained with the correlated GS09 double parton distribution function with those obtained with two instances of fully factorized single parton distribution functions: MSTW2008LO and CTEQ6LO. It appears quite feasible to measure the MPI contribution to Z+2/3/4 jets already in the first phase of the LHC with a total luminosity of one inverse femtobarn at 7 TeV. If as expected the trigger threshold for single photons is around 80 GeV, Z+2-jets production may well turn out to be more easily observable than the gamma+3-jets channel. The MPI cross section is dominated by relatively soft events with two jets balancing in transverse momentum.Comment: 15 pages, 3 plot

    Composite Octet Searches with Jet Substructure

    Get PDF
    Many new physics models with strongly interacting sectors predict a mass hierarchy between the lightest vector meson and the lightest pseudoscalar mesons. We examine the power of jet substructure tools to extend the 7 TeV LHC sensitivity to these new states for the case of QCD octet mesons, considering both two gluon and two b-jet decay modes for the pseudoscalar mesons. We develop both a simple dijet search using only the jet mass and a more sophisticated jet substructure analysis, both of which can discover the composite octets in a dijet-like signature. The reach depends on the mass hierarchy between the vector and pseudoscalar mesons. We find that for the pseudoscalar-to-vector meson mass ratio below approximately 0.2 the simple jet mass analysis provides the best discovery limit; for a ratio between 0.2 and the QCD-like value of 0.3, the sophisticated jet substructure analysis has the best discovery potential; for a ratio above approximately 0.3, the standard four-jet analysis is more suitable.Comment: 21 pages, 8 figure

    The Spin Structure of the Nucleon

    Full text link
    We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure

    The dependence of dijet production on photon virtuality in ep collisions at HERA

    Get PDF
    The dependence of dijet production on the virtuality of the exchanged photon, Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 < 2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb^-1. Dijet cross sections were measured for jets with transverse energy E_T^jet > 7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon momentum entering the hard process, was used to enhance the sensitivity of the measurement to the photon structure. The Q^2 dependence of the ratio of low- to high-xg^obs events was measured. Next-to-leading-order QCD predictions were found to generally underestimate the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models based on leading-logarithmic parton-showers, using a partonic structure for the photon which falls smoothly with increasing Q^2, provide a qualitative description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.
    • …
    corecore