1,036 research outputs found

    Modification to shock fitting program

    Get PDF
    A modified form of the Lepping - Argentiero single spacecraft, shock normal determination procedure is presented. The modified method incorporates a simple predictor-corrector algorithm which allows a faster convergence rate and the use of average values of the parameters for the starting vector

    Chile's pension reform after twenty years

    Get PDF
    The aim of this paper is to describe the 1980 Chilean pension reform and to present its main results and economic impact. It is mainly descriptive; however we have tried to emphasize the lessons that may be learned and that may be of interest to other countries in different circumstances. In particular, we focus on potential areas for regulatory improvements. In Section II, a brief description of the AFP system and its place within Chile's social security system is presented. Also, the main characteristics of the transition from the"old"to the new system are sketched, together with the main changes in regulation after 1980. Section III includes a history of pension reform in Chile along with an analysis of the circumstances which may explain why the country decided to introduce such a radical reform. In Section IV, the performance of the AFP system is summarized. In Section V, the main economic effects of pension reform are discussed. Section VI presents our view regarding future development in the regulation of the AFP system. The paper concludes with some comments on the timing of possible regulatory changes.Pensions&Retirement Systems,Banks&Banking Reform,Insurance&Risk Mitigation,Environmental Economics&Policies,Gender and Law

    Jovimagnetic secular variation

    Get PDF
    Long term variations of a planetary magnetic field are one of the few observables available in the study of planetary interiors and dynamo theory. While variations of the geomagnetic field were accessible to direct measurement for centuries, knowledge of the secular variations of other planetary dynamos is limited. New limits on Jovimagnetic secular variations were found by comparison of a Jovian internal field model obtained from the Voyager 1 magnetic field observations at epoch 1979.2 with the epoch 1974.9 Pioneer 11 O4 model. No significant secular variation of either the magnitude or position of the Jovidipole is found for the years 1974.9 through 1979.2, although a small Earth-like variation cannot be ruled out

    Currents in Saturn's magnetosphere

    Get PDF
    A model of Saturn's magnetospheric magnetic field is obtained from the Voyager 1 and 2 observations. A representation consisting of the Z sub 3 zonal harmonic model of Saturn's planetary magnetic field together with an explicit model of Saturn's planetary magnetic field and a model of the equatorial ring current fits the observations well within r 20 R sub S, with the exception of data obtained during the Voyager 2 inbound pass

    Voyager 1 assessment of Jupiter's planetary magnetic field

    Get PDF
    An estimate of Jupiter's planetary magnetic field is obtained from the Voyager 1 observations of the Jovian magnetosphere. An explicit model for the magnetodisc current system is combined with a spherical harmonic model of the planetary field with both sets of parameters determined simultaneously using a nonlinear generalized inverse methodology. The resulting model fits the observations extremely well throughout the analysis interval (r 20 Jovian radii). The Jovian internal field model obtained from the Voyager 1 data is very similar to the octopole Pioneer 11 models. The best fitting magnetodisc lies in the centrifugal equator, 2/3 of the way between the rotational and magnetic equators, as appropriate for centrifugal loading of the magnetosphere by a cold plasma

    The Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations

    Get PDF
    Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model

    Phenomenological consequences of an interacting multicomponent dark sector

    Get PDF
    We consider a dark sector model containing stable fermions charged under an unbroken U(1) gauge interaction, with a massless dark photon as force carrier, and interacting with ordinary matter via scalar messengers. We study its early Universe evolution by solving a set of coupled Boltzmann equations that track the number density of the different species, as well as entropy and energy exchanges between the dark and visible sectors. Phenomenologically viable realizations include: (i) a heavy (order 1 TeV or more) leptonlike dark fermion playing the role of the dark matter candidate, with various production mechanisms active depending on the strength of the dark-visible sector portal; (ii) light (few GeV to few tens of GeV) quarklike dark fermions, stable but with suppressed relic densities; (iii) an extra radiation component in Universe due to dark photons, with temperature constrained by cosmic microwave background data, and in turn preventing dark fermions to be lighter than about 1 GeV. Extra constraints on our scenario stem from dark matter direct detection searches: the elastic scattering on nuclei is driven by dipole or charge radius interactions mediated by either Standard Model or dark photons, providing long-range effects which, however, are not always dominant, as usually assumed in this context. Projected sensitivities for next-generation detectors cover a significant portion of the viable parameter space and are competitive with respect to the model-dependent constraints derived from the magnetic dipole moments of leptons and cooling of stellar systems

    Sequential Phase-Shifted Model Predictive Control for multicell power converters

    Full text link
    © 2017 IEEE. This paper proposes a sequential Phase-Shifted Model Predictive Control (PS-MPC) strategy for multicell power converters. The key novelty of this proposal lies in the way the predictive control strategy is formulated to fully exploit a phase-shifted pulse width modulation (PS-PWM) stage. Normally, when using a linear controller along with a standard PS-PWM stage, the modulator receives the same duty cycle for all the internal carriers. In contrast, by means of an appropriate choice of synchronized models for each carrier, the proposed predictive controller obtains independent optimal duty cycles for each carrier in a sequential manner. This allows one to formulate the optimal control problem to govern not only the output current but also the internal floating capacitor voltages, similarly to the finite-control-set MPC (FCS-MPC) case. As a result, the proposed sequential PS-MPC can attain a faster floating voltage balancing dynamic when compared to a standard PS-PWM implementation. Moreover, it generates a fixed-spectrum in the steady state with a constant commutation rate, which outperforms a standard FCS-MPC strategy. Simulation results of the proposed sequential PS-MPC strategy governing a single-phase four-level flying capacitor converter are presented to verify its dynamic and steady-state performance

    Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins

    Get PDF
    Indexación: Web of ScienceThe evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long term survival of the species.http://onlinelibrary.wiley.com/doi/10.1002/ece3.2502/epd
    corecore