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We consider a dark sector model containing stable fermions charged under an unbroken Uð1Þ gauge
interaction, with a massless dark photon as force carrier, and interacting with ordinary matter via scalar
messengers.We study its early Universe evolution by solving a set of coupled Boltzmann equations that track
the number density of the different species, as well as entropy and energy exchanges between the dark and
visible sectors. Phenomenologically viable realizations include: (i) a heavy (order 1 TeVor more) leptonlike
dark fermion playing the role of the dark matter candidate, with various production mechanisms active
depending on the strength of the dark-visible sector portal; (ii) light (few GeV to few tens of GeV) quarklike
dark fermions, stable but with suppressed relic densities; (iii) an extra radiation component in Universe due
to dark photons, with temperature constrained by cosmicmicrowave background data, and in turn preventing
dark fermions to be lighter than about 1 GeV. Extra constraints on our scenario stem from dark matter direct
detection searches: the elastic scattering on nuclei is driven by dipole or charge radius interactions mediated
by either Standard Model or dark photons, providing long-range effects which, however, are not always
dominant, as usually assumed in this context. Projected sensitivities for next-generation detectors cover a
significant portion of the viable parameter space and are competitive with respect to the model-dependent
constraints derived from the magnetic dipole moments of leptons and cooling of stellar systems.
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I. MOTIVATIONS AND SYNOPSIS

The existence of a multicomponent dark sector has been
extensively discussed in the literature (see [1,2] for two
recent reviews). Such framework generally includes many
new states with no direct interactions with the Standard
Model (SM) particles, but possibly interacting among
themselves by means of new forces. Motivations for this
construction have been put forward in a variety of different
contexts, ranging, e.g., from beyond SM physics in con-
nection to collider data and flavor anomalies, to explaining
the nature of the dark matter component of the Universe, and
to addressingpossible shortcomings in theSMof cosmology.
In particular, regarding the dark matter problem, any

nonrelativistic stable dark state can potentially contribute
to the Universe’s matter budget. Because of the se-
cluded nature of the dark sector which prevents large

couplings to ordinary matter, these states automatically
satisfy observational properties for dark matter, mostly
derived under the assumption that the only relevant
interaction between dark and ordinary matter is gravity.
On the other hand, given the complexity of the dark sector,
the phenomenology of dark matter candidates in this
context could be richer than simply looking at gravitational
effects. For example, dark matter itself could be multi-
component or in composite forms; dark sector interactions
may lead to macroscopic effects and, for instance, impact
on the paradigm in the SM of cosmology that dark matter
should be described as a collisionless fluid.
In this paper we illustrate the interplay among different

effects occurring when the dark sector contains several
species. More explicitly, we will discuss the early
Universe’s thermal history in such a scenario and the
generation of dark matter and other stable relics. One
peculiarity is the fact that there are two reservoirs of states,
ordinary and dark, and their temperatures are not neces-
sarily the same. Therefore, a set of coupled Boltzmann
equations, tracking at the same time the number density of
the different species and the energy exchanges between the
two sectors, needs to be considered.
To investigate explicitly this issue, we must first commit

ourselves to a specific model of the dark sector (which we
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do in Sec. II by considering a rather minimal setup). The
choice of model provides an explicit spectrum of states
within the dark sector, the interaction strengths among the
dark states, and the strength of the portal interaction
between the dark and SM states. These must be supplied
in order to extract definite predictions. In particular, we
shall assume that the dark force is long range, that is
mediated by an unbroken Uð1Þ gauge interaction.
Regarding the particle content, besides the force carrier,
a massless dark photon, we introduce a set of stable dark
fermions charged under the Uð1Þ. One of these may
account for most of dark matter in the Universe since it
is rather heavy, at the TeV scale or above, and passes upper
limits from self-interaction effects [3–5]. The others are
much lighter, have suppressed relic abundances, but concur
in determining the ratio between dark and visible photon
temperatures at late times; such ratio is constrained by
cosmic microwave background (CMB) data, given that
dark photons contribute as an extra radiation component
to the Universe’s dynamics. In this respect, the role of
portal interactions between dark and visible sectors is also
important: we consider scalar messengers mediating
Yukawa-like interactions. The latter are also crucial for
selecting the mechanism for dark matter generation and
final relic densities. Such interplay is discussed in detail in
Sec. III.
Direct detection, namely the attempt to measure nuclear

recoils induced by dark matter scatterings, is one of the
main tools to test a given dark matter scenario. In our
framework, the direct-detection cross section is mostly
driven, via loop induced magnetic dipole and charge radius
interactions, by the massless mediators, SM and dark
photons. While long-range interactions are present and
boost the recoil spectrum at low recoil energies, the
correlated contact terms are also contributing to the cross
section and may be dominant (contrary to standard lore that
contact interactions can be neglected in the presence of
long-range effects). These aspects are illustrated in Sec. IV,
bridging also between astrophysical, cosmological, and
high-energy observables and relative constraints, demon-
strating once more the diversity of the phenomenological
implications of introducing such a multicomponent dark
sector.

II. A MODEL OF THE DARK SECTOR

Several dark sector models have been studied in the
literature and they are usually classified [2] according to the
portal through which they interact with ordinary matter. We
consider a model consisting of dark fermions that are, by
definition, singlets under the SM gauge interactions. These
dark fermions interact with the visible sector through a
portal provided by scalar messengers which carry both SM
and dark-sector charges. These scalars are phenomenologi-
cally akin to the sfermions of supersymmetric models.

In general, we can have as many dark fermions as
there are in the SM; they can be classified conveniently
according to whether they couple (via the corresponding
messengers) to quarks (qL, uR, dR) or leptons (lL, eR):
we denote the former (hadronlike) Q and the latter (lepton-
like) χ. The Yukawa-like interaction Lagrangian can be
written as [6,7]:

L⊃−gLðϕ†
Lχ̄RlLþSU†

L Q̄U
RqLþSD†

L Q̄D
RqLÞ

−gRðϕ†
Rχ̄LeRþSU†

R Q̄U
LuRþSD†

R Q̄D
LdRÞþH:c: ð2:1Þ

The L-type scalars are doublets under SUð2ÞL, while the
R-type scalars are singlets under SUð2ÞL. The SL;R mes-
sengers carry color indices [unmarked in (2.1)], while the
messengers ϕL;R are color singlets. The Yukawa coupling
strengths are parametrized by αL;R ≡ g2L;R=ð4πÞ; they can
be different for different fermions and as many as the SM
fermions.
In order to generate chirality-changing processes, we

must have the mixing terms

L⊃−λsS0ðH†ϕ†
RϕLþH̃†SU†

R SUL þH†SD†
R SDL ÞþH:c:; ð2:2Þ

where H is the SM Higgs boson, H̃ ¼ iσ2H⋆, and S0 a
scalar singlet of the dark sector. After both S0 and H take a
vacuum expectation value (VEV) (μS and v—the electro-
weak VEV—respectively), the Lagrangian in Eq. (2.2)
gives rise to the mixing between right- and left-handed
states.
Dark sector states interact by means of an unbroken

Uð1ÞD gauge symmetry; the corresponding massless gauge
boson is the dark photon γD whose coupling strength we
denote by αD ≡ g2D=ð4πÞ. We assign different dark Uð1ÞD
charges to the various dark sector fermions to ensure, by
charge conservation, their stability. There is no kinetic
mixing between the ordinary and the dark photon [8,9]. The
latter is a distinctive feature of models in which the dark
photon is, and remains, massless as opposed to those in
which the gauge symmetry is broken and the dark photon is
massive. While there is no tree-level coupling between dark
fermions and SM photons, and between ordinary matter
and dark photons, the mixing in Eq. (2.2) leads, through
one-loop diagrams and therefore operators of dimension
larger than four, to an effective coupling of ordinary matter
to the dark photon as well as of the dark fermions to the
ordinary photon.
When the dark sector scalar S0 and the Higgs boson

acquire VEVs, the scalar messengers must be rotated to
identify the physical states. Considering first the lepton
sector, while before the rotation all ϕ states have the same
mass mϕ, after the rotation we find the mass eigenstates
(labeled by �)
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ϕ� ≡ 1ffiffiffi
2

p ðϕLe � ϕRÞ; ð2:3Þ

with masses mϕ� ¼ mϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ηs

p
, where we defined the

mixing parameter:

ηs ≡ λsμSv
m2

ϕ

: ð2:4Þ

We must have ηs < 1 in order for the ϕ− state to be
physical. In the new basis, the interaction terms in Eq. (2.1)
in the lepton sector is given by

LðlepÞ ⊃ −gLϕ
†
Lνð χ̄RνLÞ −

gLffiffiffi
2

p ðϕ†
þ þ ϕ†

−Þð χ̄ReLÞ

−
gRffiffiffi
2

p ðϕ†
þ − ϕ†

−Þð χ̄LeRÞ þ H:c: ð2:5Þ

The picture in the hadronic sector is perfectly specular; in
the following we will indicate generically withmS the mass
for the eigenstates SULd and S

D
Lu before the rotation, and keep

ηs as mixing parameter for the physical eigenstates:

SU� ≡ 1ffiffiffi
2

p ðSULu � SUR Þ and SD� ≡ 1ffiffiffi
2

p ðSDLd � SDR Þ: ð2:6Þ

Looking at (2.5), we can see that for χ to be a stable
dark-sector species, its mass must be at most mϕ−

þme.
Similarly, for a dark-sector species Q, the mass must be no
heavier than mS− þmq, where mq is the mass of the SM
species corresponding to Q. This sets an upper bound for
the mixing ηs:

ηs < 1 −
�
Mχ;Q

mϕ;S

�
2

; ð2:7Þ

whereMχ;Q stands for the mass of the heaviest stable dark-
sector species and mϕ;S for the mass parameter of the
corresponding messenger. We assume that Mχ;Q is much
heavier than any SM species. The upper bound in Eq. (2.7)
also guarantees that the scalar messengers are heavier than
the dark fermion into which they can thus decay.
This model can be considered as a template for many

models of the dark sector with the scalar messenger as
stand-in for more complicated portals. It is a simplified
version of the model in [6], which might provide a natural
solution to the SM flavor-hierarchy problem. It has been
used to predict new decays for the Higgs boson [10–12],
neutral Kaons [13] and the Z-boson [14] as well as invisible
decays for the neutral K- and B-mesons [15].
Models of self-interacting dark matter charged under

Abelian or non-Abelian gauge groups and interacting
through the exchange of massless as well as massive
particles have a long history [3–6,16–34]. We have relied
in particular on [3,5,21,22]—the constraints of which we
recover in our framework where dark matter is only a

component among the many of the dark sector within the
specific underlying model defined by Eqs. (2.1)–(2.2).
Interacting dark matter can form bound states. The phe-
nomenology of such atomic dark matter [24] has been
discussed in the literature (see [4] and references therein).
In this paper, we shall only consider the case in which these
bound states, if they exist, are mostly ionized.

A. Constraining the model

Several limits on the parameter space of the model are
known from high-energy physics and tests in astrophysical
and cosmological environments. We list below the most
severe constraints and the relative implications for mass
parameters and coupling constants, as a preliminary outline
of the regions in parameter space which will be relevant in
the analysis of dark matter candidates within this frame-
work. These constraints will be discussed further in Sec. IV,
when examining current limits and projected sensitivities
from dark matter direct detection experiments.
Contrary to the case of a massive dark photon, constraints

from flavor and precision physics, as well as radiative
emission in astrophysical bodies, come from one-loop order
corrections providing the coupling to SM fermions. Under
the assumption of CP conservation in the dark sector, the
limits quoted below are mostly derived from the effective
magnetic moment of SM fermions with respect to the dark
photon or the ordinary photon, induced by dark fermion—
scalar messenger loops. Since a change in the chirality of the
fermions is required, the limits are strongly dependent to the
mixing ηs. Depending on the process under consideration,
the experimental limits only constrain particular combina-
tions of couplings andmasses in the dark sector. At this level,
it is then more useful to quote results for Yukawa couplings
and dark-sectormasses for specific flavors, rather than taking
them to be universal as in Eq. (2.1).

(i) Precision physics: Magnetic dipole moments of
leptons provide a deeper insight on the parameter
space. From the experimental measurement of the
electron magnetic dipole moment [35], we find:

ðme
ϕ−Þ2
me

χ

0.01

ηs
ffiffiffiffiffiffiffiffiffiffiffi
αeLα

e
R

p ≳ 2 × 103 TeV; ð2:8Þ

where me
χ stands for the mass of corresponding dark

fermion. A comparable limit can be found from the
experimental measurement of the muon magnetic
dipole moment [36]:

ðmμ
ϕ−Þ2
mμ

χ

0.01

ηs
ffiffiffiffiffiffiffiffiffiffiffi
αμLα

μ
R

p ≳ 4 × 102 TeV: ð2:9Þ

Since the measurement of the tau magnetic dipole
moment is experimentally challenging, the corre-
sponding limit is much less relevant, at about the
GeV level.
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Except for taulike dark sector species, these limits
point to lepton-like scalar messengers at a heavy scale,
say 10 TeV or above, and leptonlike dark fermions
significantly lighter, say at 1 TeVor below—unless the
couplings αL or αR gets suppressed, or the mixing
parameter ηs is small.

(ii) Collider physics: Direct searches for charged scalar
particles at the LHC [37] set a limit [15]

mi
S ≳ 940 GeV; ð2:10Þ

for the messenger mass related to the dark fermions
QU and QD, while [38] have set constraints on the
mass of sleptons, which give the following lower
bound on the mass of leptonlike scalar messengers:

me
ϕ ≳ 290 GeV: ð2:11Þ

The limit increases to 1.5 TeV if more families are
included. No limits exist for the masses of the dark
fermions from events in which they are produced
because they are SM singlets and do not interact
directly with the detector.

(iii) Astrophysics probes: Dark sector species can change
the energy transport in astrophysical environments.
Constraints for models with a massless dark photon
from astrophysics have been discussed in [39–41].
The most stringent limit comes from stellar cooling
in globular clusters by dark-photon Bremsstrahlung
emission of electrons scattering on 4He nuclei; for a
standard choice of environmental parameters, and an
upper value of 10 erg g−1 s−1 on the extra cooling
rate by exotic processes [42], we find:

ðme
ϕ−Þ2
me

χ

1

ηs

0.1ffiffiffiffiffiffi
αD

p 0.01ffiffiffiffiffiffiffiffiffiffiffi
αeLα

e
R

p ≳ 3 × 103 TeV: ð2:12Þ

This limit applies specifically to the Yukawa cou-
pling to electrons and the corresponding messenger
state, and affects regions in parameter space analo-
gous to the limit in Eq. (2.8). When considering,
instead, extra cooling effects in supernovae, the most
relevant process is the dark photon emission in
nucleon-nucleon Bremsstrahlung. From the neutrino
signal of supernova 1987A one can deduce:

ðmi
SÞ2

mQi

0.001

ηs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αDα

i
Lα

i
R

p ≳ 2.4 × 102 TeV: ð2:13Þ

The above limit applies to the Yukawa couplings of
u and d quarks and the corresponding messenger
states. This sets an impact on the parameter space
analogous to the leptonic sector, except that, for
quarklike dark fermions, we will also explore the

possibility of larger mass splittings with respect to
the messenger states, withmQ even at the GeV scale.

(iv) Self-interactions for dark matter particles: As al-
ready anticipated, our scenario gets severely con-
strained for light dark matter candidates because of
the long-range self-interactions induced by the
Uð1ÞD gauge symmetry. The most severe observa-
tional limits come from the impact on the dark
matter density distribution in collapsed dark matter
structures, rather than effects in the early Universe or
the early stages of structure formation [3,4,22].
Bounds have been derived from the dynamics in
merging clusters, such as the bullet cluster [43], the
tidal disruption of dwarf satellites along their orbits
in the host halo, and kinetic energy exchanges
among dark matter particles in virialized halos.
Among these limits, the latter turns out to be the
most constraining: energy exchanges through dark
matter self-interactions tend to isotropize dark mat-
ter velocity distributions, while there are galaxies
whose gravitational potentials show a triaxial struc-
ture with significant velocity anisotropy. A limit
has been derived by estimating an isotropization
timescale (via hard scattering and cumulative
effects of many interactions, with Debye screening
taken into account) and comparing that timescale to
the estimated age of the object [22]: a refinement of
this limit involves tracking the evolution of the
velocity anisotropy due to the energy transfer [5].
The ellipticity profile inferred for the galaxy
NGC720, according to Fig. 4 of Ref. [5] sets a
limit of about:

mχ

�
0.01
αD

�
2=3 ≳ 300 GeV ð2:14Þ

where mχ here stands for the dark matter mass—
anticipating that we will focus on a leptonlike dark
fermion as dark matter candidate—and the αD
scaling quoted this equation is approximate and
comes from the leading mχ over αD scaling in the
expression for the isotropization timescale. Note that
the limit quoted here is subject to a number of
uncertainties and assumptions; it is less stringent
than earlier results, such as the original bound
quoted from [3], as well about a factor of 3.5 weaker
than [22] (see also, e.g., [44,45]). On the other hand,
results on galaxies from N-body simulations in self-
interacting dark matter cosmologies [46], taking into
account predicted ellipticities and dark matter den-
sities in the central regions, seem to go in the
direction of milder constraints, at about the same
level or slightly weaker than the value quoted in
Eq. (2.14). This result is also subject to uncertainties,
such as the role played by the central baryonic
component of NGC720.
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As benchmark avoiding self-interaction con-
straints we will consider cases with dark matter
mass about 1 TeV and αD ≃ 10−2.
We wish to reiterate that all throughout the history

of the Universe, the dark sector is ionized. In our
situation, we have multiple dark components: a
dominant component consisting of heavy species
and a subdominant component consisting of light
species. Since both species are charged under the
dark U(1), there is additional interaction between
the heavy and light species apart from the self-
interaction between identical species.
Investigating the effect of having multiple dark

matter components on structure formation at small
and large scales is an interesting possibility that is
beyond the scope of our work, but it could be a
potential avenue for further exploration. Instead, we
shall assume that we are working in the regime in
which the multicomponent feature has negligible
effect on structure formation.

B. Reference framework and parameter space

Taking into account the emerging picture, we will
consider a scenario with: (i) scalar messengers as the
heaviest states in the dark-sector, (ii) a leptonlike dark
fermion χ playing the role of dark matter, lighter than scalar
messengers but at a comparable mass scale, and (iii) two
dark fermionsQU and QD coupled to the quarks, which are
much lighter than χ and representative of the light dark
sector (we shall see that the masses of the light dark species
turn out to be indirectly constrained by CMB limits on
exotic radiation components). Unless comparing to specific
observables, to keep the model numerically tractable—but
also without losing any of the main trends—we will adopt a
set of simplifying assumptions. We restrict ourselves to the
case in which all messenger states have a degenerate mass
spectrum defined by a single mass parametermϕ ¼ mS and
a single mixing parameter ηs. For simplicity, the Yukawa
couplings of all the dark fermions are also taken to be
equal, and with αL ¼ αR. The extra parameters we need to
deal with are the mass of the dark matter candidate mχ , the
common massmQ for the two light quarklike dark fermions
and the dark photon coupling αD.
The remainder of the paper is devoted to additional

constraints coming from the thermal history of the Universe
and dark matter searches.

III. THERMAL HISTORY AND RELIC DENSITY

A. General picture

The aim is to compute the cosmological relic density for
the stable species in the dark sector. The technical calcu-
lation, via a set of coupled Boltzmann equations, is
discussed in the next section. However, it is useful to
illustrate first a few features characterizing our setup.

The lightest fermions of given dark charge, leptonlike or
hadronlike, are stable, and their number density in the early
Universe heat bath changes through processes involving
pair productions and pair annihilations; initially in equi-
librium (chemical equilibrium; see the discussion below for
a clarification on this point), they decouple in the non-
relativistic regime. Thus, they have a relic density which
can be approximated by the celebrated “WIMP miracle”
formula:

Ωχ;Qh2 ∼ 0.1

�
2.5 × 10−9 GeV−2

hvσχχ̄;QQ̄i
�
; ð3:1Þ

where hvσχχ̄;QQ̄i is the thermal average of the pair anni-
hilation cross section for either χ or Q, including all
kinematically allowed final states. However, there are
two elements which make the computation in the case at
hand more involved than in other WIMP setups. First,
while one usually deals only with SM final states, the pair
annihilation may involve both particles belonging to the
dark sector and to the SM sector; the leading processes are
into two dark photons and a pair of SM fermion-
antifermion of the corresponding type, as shown in Fig. 1
for the QQ̄ initial state. Assuming that s-wave processes
dominate, the thermal average of the pair annihilation cross
sections, in the limit of small temperature corrections and
massless final states, are approximately given by:

hvσχχ̄;QQ̄→γDγDi∼
α2D
m2

χ;Q
and hvσχχ̄;QQ̄→ff̄i∼

α2L
m2

ϕ;S

�
mχ;Q

mϕ;S

�
2

:

ð3:2Þ

Substituting these approximate expressions into Eq. (3.1),
one can find the preferred mass ranges for whichΩχ is at the
level of the cosmological dark matter abundance, while ΩQ

is instead negligible (fulfilling the scheme emerging from
the set of constraints discussed in the previous section).
Taking αD and αL to be Oð10−2Þ, and messenger scalars
lying around 10 TeV, we find that Ωχh2 ∼ 0.1 ifmχ is in the
1–10 TeV range; χs predominantly annihilate into dark
photons (SM fermions) if ðαL=αDÞ2ðmχ=mϕÞ4 is much less
than (greater than) unity. Requiring thatΩQ is at most 1% of
the Universe’s matter density, we find as a conservative

FIG. 1. The Feynman diagrams giving the dominant contribu-
tions to the total pair annihilation rate of hadronlike dark sector
fermions; diagrams contributing to the process for leptonlike dark
fermions are analogous.
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upper bound on the masses of the hadronlike species
mQ ≲ 100 GeV; Qs predominantly annihilate into dark
photons.
The second point we need to pay attention to is the fact

that “thermal bath” effects, neglected so far, can actually
have a significant impact on the overall picture.
Analogously to the photon in the SM sector, the dark
photon is crucial in keeping dark sector particles at a
common temperature via, e.g., the large energy exchanges
in Compton-like dark fermion–dark photon elastic scatter-
ings. These elastic scattering processes maintain kinetic
equilibrium within the dark sector. Moreover, being a stable
massless particle, the dark photon can potentially give a
sizable contribution to the budget for the energy density in
radiation in the Universe, even at epochs, such as recombi-
nation, at which extra radiation components are tightly
constrained. The general picture is given schematically
in Fig. 2. Assuming that the Uð1ÞD coupling αD is
perturbative but still sufficiently large, dark photon inter-
actions (or, eventually, a chain of processes involving
additional interactions with other mediators/forces in the
dark sector) enforce that all dark sector particles in the
thermal bath have a common temperature Td. Analogously,
Compton scattering between SM photons and SM particles
maintains kinetic equilibrium within the visible sector.
However, the temperature T of the visible sector may be
different from Td.
In the regime at which messenger scalars are non-

relativistic, and with their number densities suppressed,
the communication between visible and dark sectors (both
at the level of particle number-changing processes and
elastic scatterings) is mostly regulated by the Yukawa-like
interactions in Eq. (2.1). Let us first turn off the portal
interactions, i.e., αL ¼ αR ¼ 0. In this case the thermal bath
in the visible and dark sectors evolve independently, and
one can track T and Td by imposing entropy conservation

separately in each of the two sectors, see, e.g., [21]. The
cooling process goes as the inverse of the scale factor plus a
correction due to the change in effective number of
relativistic degrees of freedom, when particles becoming
nonrelativistic transfer their entropy to lighter, relativistic
states of the corresponding sector. We define the temper-
ature ratio between dark and visible sectors at a given time t
to be

ξðtÞ≡ TdðtÞ
TðtÞ ð3:3Þ

and consider some initial time t0, with the temperature in
the visible sector denoted by T0, at which two sectors are
already decoupled. Assuming that entropy densities in the
dark and visible sectors, which are respectively given by:

sd ¼
2π2

45
g�SdðTdÞT3

d and sv ¼
2π2

45
g�SvðTÞT3; ð3:4Þ

are separately conserved in a comoving volume, one finds
that the temperature ratio at the CMB epoch is given by:

ξCMB ¼
�

g�Sdðξ0T0Þ
g�SdðξCMBTCMBÞ

g�SvðTCMBÞ
g�SvðT0Þ

�
1=3

ξ0; ð3:5Þ

where g�SvðTÞ counts the number of internal degrees of
freedom (fermionic species are weighted by 7=8) for all SM
particles that are relativistic at temperature T, and g�SdðTdÞ
is the analogous quantity in the dark sector. Evaluating this
ratio is relevant since this is the epoch at which extra
radiation components are most severely constrained by
cosmological observables. The limit is usually given in
terms of Neff , the effective number of neutrinolike species,
i.e., fully relativistic fermions with two internal degrees of
freedom, and with a temperature which is a factor of
ð4=11Þ1=3 cooler than photons. Neff is related to the
radiation energy density by:

ρrðtÞ≡ ργðTðtÞÞ
�
1þ 7

8

�
4

11

�
4=3

NeffðtÞ
�
: ð3:6Þ

The Planck satellite has measured Neff at the CMB epoch to
be [47]: Neff ¼ 3.27� 0.15, 68% CL. Subtracting out the
contribution from the three standard model neutrinos [48]
NSM

eff ¼ 3.046, and assuming that the dark photon is the only
dark sector relativistic state at the CMB epoch, giving rise to
the extra radiation component ρr;dðTdðtÞÞ ¼ ργðTðtÞÞξ4ðtÞ,
we can translate the upper limit on Neff from Planck into a
limit on the temperature ratio at the CMB epoch; one finds:

ξCMB < 0.54; 68% CL: ð3:7Þ

The 2σ and 3σ upper limits are, respectively, about 0.59 and
0.63. Our reference dark sector framework consists of: the

FIG. 2. Schematic diagram of the interactions between the
different reservoirs of states. αem ≡ e2=ð4πÞ and αD ≡ g2D=ð4πÞ
are, respectively, the electromagnetic and dark photon interaction
strengths. The coupling αL;R are defined by the Lagrangian in
Eq. (2.1). Ordinary and dark photons do not talk directly to
each other.
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dark photon, one leptonlike Dirac fermion χ, and NQ light
hadronlike Dirac fermions Q being relativistic at the
initial time t0. From Eq. (3.5) we obtain g�Sdðξ0T0Þ=
g�SdðξCMBTCMBÞ ¼ ð7NQ þ 11Þ=4. Even for a single family
of dark hadrons (NQ ¼ 2) we find ξCMB ≈ 0.61ξ0, in tension
with the limit quoted in (3.7) if ξ0 ¼ 1 (namely T ¼ Td at
t ¼ t0).Aswe increase thenumber of light species in the dark
sector, this problemgetsmore severe.Apossiblewayout is to
relax the initial condition. In principle the picture with
decoupled sectors can be extrapolated to T0 as high as,
say, the reheating temperature.One can then assume an initial
temperaturemismatch between the two sectors, with a cooler
dark sector (i.e., ξ0 < 1), and thus the dark photon contri-
bution to the radiation component of the Universe can be
made small relative to the visible sector contribution. Similar
conclusions (for various implementations of the dark-sector
portal) were reached in, e.g., [3,21,40,49–52].
On the other hand, when the messenger portal is turned

back on, allowing for nonvanishing Yukawa couplings αL
and αR, energy (and entropy) can be exchanged between
visible and dark sectors. Regardless of what is assumed for
ξ0, even if the system is not initially in kinetic equilibrium,
for couplings sufficiently large, we expect it to relax to a
maximum entropy configuration with the two temperature
in the two sectors that will tend to become equal. This
brings back the problem of satisfying the bound on extra
radiation component associated to the dark photon at the
CMB epoch, and will effectively translate on an upper
bound on the Yukawa couplings. Since αL and αR both
enter in the discussion for kinetic and chemical equilib-
rium, these two aspects have to be considered at the same
time, as we will do with the set of coupled Boltzmann
equations that we introduce in the next subsection and solve
numerically.

B. Boltzmann equations

Having highlighted above that SM and dark sector states
may have, in general, different temperatures, T and Td
respectively, it is useful to keep track of them separately.
Hence, in what follows, we adopt the following notation: id
will generically indicate a species in the dark sector, while
species in the visible sector will be denoted by iv; i will, in
general, stand for any species in either sector. To track the
distribution function of a state id, we follow [53,54] and
consider the generic Boltzmann equation

L½fid � ¼ C½fid �; ð3:8Þ

where fid is the occupation number for the particle id, L is
the Liouville operator tracking the evolution in the
Friedmann-Robertson-Walker (FRW) background, and C
is the collision operator. The Liouville operator takes the
form

L½fid � ¼ Eid

�∂fid
∂t −Hp⃗ ·

∂fid
∂p⃗

�
; ð3:9Þ

where p⃗ is the physical momentum of id and H is the
Hubble rate. In the early Universe, the Hubble rate is
dominated by radiation components coming from the
visible and dark sectors. The first Friedmann equation tells
us that

H2ðtÞ ≈ 4π3

45M2
Pl

½g�vðTÞT4 þ g�dðTdÞT4
d�: ð3:10Þ

In the dilute limit, the collision operator acting on fid is
driven by 2 → 2 processes, such as id þ j ↔ kþ l. It is
then obtained by summing terms of the form:

Cidþj↔kþl½fidðpidÞ� ¼
1

2

Z
dΠjðpjÞdΠkðpkÞdΠlðplÞð2πÞ4δð4Þðpid þ pj − pk − plÞ

× f−jMðid þ j → kþ lÞj2fidðpidÞfjðpjÞ½1� fkðpkÞ�½1� flðplÞ�
þ jMðkþ l → id þ jÞj2fkðpkÞflðplÞ½1� fidðpidÞ�½1� fjðpjÞ�g; ð3:11Þ

where dΠjðpjÞ≡ d3p⃗j=½ð2πÞ32EjðpjÞ� are the usual
phase-space integration factors.
When tracking chemical equilibrium, i.e., the evolution

of the number density of id, only inelastic processes are
relevant. Given the structure of our model, the relevant
number changing processes for χ and Q states (for Td not
too large) are all in the form of particle-antiparticle pair
annihilation or creation (see Fig. 1), namely

CðinÞ½fid� ¼
X
jv

Cidþīd↔jvþj̄v ½fid�þ
X
jd≠id

Cidþīd↔jdþj̄d ½fid�:

ð3:12Þ

The expression for CðinÞ½fid � can be simplified under
the standard set of assumptions: (i) CP invariance in the
process id þ īd → jd þ j̄d, so that jM→j2 ¼ jM←j2
(strictly true in our model); (ii) dilute limit, with fi ≪ 1,
1� fi ≈ 1, and equilibrium distributions with occupation
numbers approximated as

fðeqÞi ¼ fðeqÞi ðEi; TÞ ≈ exp

�
−
Ei − μi

T

�
; ð3:13Þ

and (iii) kinetic equilibrium among dark sector states
as enforced by elastic scatterings on the dark photon.
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Following from (ii), one can safely assume that standard model states follow equilibrium distributions and, using
conservation of energy, formally rewrite their occupation numbers in terms of thermal distributions for the dark sector states
in the form

fivfīv ¼ fðeqÞiv
ðEiv ; TÞfðeqÞīv

ðEīv ; TÞ ¼ exp

�
−
Eiv þ Eīv

T

�
¼ exp

�
−
Eid þ Eīd

T

�
¼ fðeqÞid

ðEid; TÞfðeqÞīd
ðEīd ; TÞ: ð3:14Þ

Note that we have T rather than Td in the last expression. As for (iii), this implies that, for any dark sector state, one may
assume that there is an overall scaling—only dependent on time—of the occupation numbers of dark sector species with
respect to equilibrium distributions:

fidðEid ; tÞ ≃
nidðtÞ
nðeqÞid

ðtÞ
fðeqÞid

ðEid ; TdðtÞÞ≡ AidðtÞfðeqÞid
ðEid; TdðtÞÞ; ð3:15Þ

with nid and nðeqÞid
being the number densities of id obtained by integrating fid and fðeqÞid

, respectively.
To find the evolution equations for the number densities nid of the relevant dark-sector fermions, we take the zeroth-order

moment of the Boltzmann equation to obtain

_nid þ3Hnid ¼
X
iv

½−hσviidīd→ivīvðTdÞn2id þhσviidīd→ivīvðTÞn2id;eqðTÞ�þ
X
jd≠id

½−hσviidīd→jdj̄dðTdÞn2id þhσvijdj̄d→idīdðTdÞn2jd �:

ð3:16Þ

It is understood that the sum over jd includes the dark photon. The thermally averaged cross section hσvi in (3.16) is
defined, in terms of the corresponding Møller cross section, as

hσviiī→jj̄ðT̃Þ≡
R d3p⃗1

ð2πÞ3
d3p⃗2

ð2πÞ3 ðσvÞiī→jj̄f
ðeqÞ
i ðp1; T̃ÞfðeqÞī ðp2; T̃ÞR d3p⃗1

ð2πÞ3
d3p⃗2

ð2πÞ3 f
ðeqÞ
i ðp1; T̃ÞfðeqÞī ðp2; T̃Þ

: ð3:17Þ

Looking at (3.16), there are three independent variables: t, T, and Td. In the standard approach, one closes the system by
assuming entropy conservation; this leads to a time-temperature relation. In our current setup, however, the two sectors are
allowed to exchange energy and entropy, and thus the entropy of either sector is neither conserved. Nevertheless, the time
evolution of the entropies of both sectors will allow us to obtain a well-posed system of ordinary differential
equations (ODE).
In tracking the entropy of both sectors, we first need to introduce the definition of entropy of species i in terms of the

occupation number fi. This is given by

si ¼ −
Z

d3p⃗
ð2πÞ3 ðfi ln fi − fiÞ: ð3:18Þ

Its evolution can be obtained by differentiating si with respect to time, and then using Boltzmann equation. We have

_si þ 3Hsi ¼ −
Z

d3p⃗
ð2πÞ3 C½fi� ln fi: ð3:19Þ

We then take the sum of (3.19) over dark-sector species. Using kinetic equilibrium and dilute limit assumptions, one
obtains:

_sd þ 3Hsd ¼
1

Td

X
id

Z
d3p⃗
ð2πÞ3 ECðinÞ½fid � þ

1

Td

X
id

Z
d3p⃗
ð2πÞ3 ECðelÞ½fid � −

X
id

lnAidðtÞ
Z

d3p⃗
ð2πÞ3 C

ðinÞ½fid �; ð3:20Þ

where Aid has been defined in Eq. (3.15) above, and CðelÞ½fid � is the elastic part of the collision operator. Similarly, for sv,
we have:
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_sv þ 3Hsv ¼
1

T

X
iv

Z
d3p⃗
ð2πÞ3 ECðinÞ½fiv � þ

1

T

X
iv

Z
d3p⃗
ð2πÞ3 EC

ðelÞ½fiv �: ð3:21Þ

In the sum over dark-sector/visible sector species, we only take those processes that involve the transfer of entropy from one
sector to the other. To proceed further, it is appropriate to digress into the discussion of the elastic part of the collision
operator. It encodes the processes of type iþ B ↔ iþ B (i.e., the processes represented by the diagrams shown in Fig. 3),
where i is some species scattering from bath particles B, which also contribute to the entropy transfer between the two
sectors. As demonstrated in [55], it can be written as

CðelÞ½fi� ¼
X
B

CiþB↔iþB½fi� ð3:22Þ

where CiþB↔iþB½fi� is a Fokker-Planck type operator, given by

CiþB↔iþB½fi�≡ ∂
∂p⃗i

·

�
γiBðEi; TBÞ

�
EiTB

∂fi
∂p⃗i

þ p⃗ifi

��
¼ ∂

∂p⃗i
·

�
γiBðEi; TBÞEi

∂fi
∂p⃗

�
ðTB − TiÞ: ð3:23Þ

In obtaining this expression, it is assumed that the momentum transfer between i and B is much smaller than the typical
momentum of either species. The momentum transfer rate can be shown to be given by:

γiBðEi; TBÞ ¼
1

48π3E2
i TBð1 − jv⃗ij2=3Þ

Z
∞

mB

dEBfBðEB; TBÞ
pBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
i E

2
B −m2

i m
2
B

p �
1

16

Z
0

−4p2
CM

dtjMj2ð−tÞ
�
; ð3:24Þ

where 4p2
CM ≡ ½s0 − ðmi þmBÞ2�½s0 − ðmi −mBÞ2�=s0 and s0 ≡m2

i þm2
B þ 2EiEB. Using (3.23), we haveZ

d3p⃗i

ð2πÞ3 Ei CðelÞ½fi� ¼ −ðTB − TiÞ
Z

d3p⃗i

ð2πÞ3 γiBðEi; TBÞp⃗i ·
∂fi
∂p⃗i

¼ 3niðTB − TiÞhγiBiðTi; TBÞ; ð3:25Þ

where we identify the thermal average of the momentum transfer rate

hγiBiðTi; TBÞ≡
R d3p⃗i

ð2πÞ3 γiBðEi; TBÞp⃗i ·
∂fi∂p⃗iR d3p⃗i

ð2πÞ3 p⃗i ·
∂fi∂p⃗i

¼
R
∞
mi
dEiðE2

i −m2
i Þ3=2γiBðEi; TBÞfðeqÞi ðEi; TiÞR

∞
mi
dEiðE2

i −m2
i Þ3=2fðeqÞi ðEi; TiÞ

: ð3:26Þ

At this point we would like to emphasize the following: if
the species i were nonrelativistic, Ti ≪ mi, one could
ignore the dependence of γiB on energy, and the thermal
average may be safely replaced as hγiBiðTi; TBÞ≈
γiBðEi ¼ mi; TBÞ. For instance, this applies for the case
of scatterings of nonrelativistic DM particles from a bath of
relativistic SM species (this is the limit applied, e.g., in
[56]). In our scenario, however, we would also like to
account for entropy transfers from the dark-sector to the
visible sector; this situation corresponds to the case where

the dark-sector species act as bath particles for scatterings
of visible sector species. When the scattering species are
relativistic, one needs to take into account the energy
dependence of γiB and perform the thermal average at each
step in the numerical solution of the system of coupled
differential equations; further details about the technical
implementation of this term are given Appendix B.
We are now in the position to write down the evolution

equations for the entropies in the visible and dark sectors;
we have (see also the analogous set of equations in [57])

_sv þ 3Hsv ≈
1

T

X
iv

X
id

½−hσvEiivīv→idīdðTÞn2iv;eqðTÞ þ hσvEiidīd→ivīvðTdÞn2id � − 3
X
iv

X
id

hγividiðT; TdÞ
�
T − Td

T

�
niv;eqðTÞ;

_sd þ 3Hsd ≈
1

Td

X
id

X
iv

½−ðhσvEiidīd→ivīvðTdÞ − hσviidīd→ivīvðTdÞTd lnAidÞn2id

þ ðhσvEiivīv→idīdðTÞ − hσviivīv→idīdðTÞTd lnAidÞn2iv;eqðTÞ� þ 3
X
id

X
iv

hγidiviðTd; TÞ
�
T − Td

Td

�
nid ; ð3:27Þ
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where we have introduced yet another thermal average

hσvEiiī→jj̄ðT̃Þ≡
R d3p⃗1

ð2πÞ3
d3p⃗2

ð2πÞ3 ðσvÞiī→jj̄½Eiðp1Þ þ Eīðp2Þ�fðeqÞi ðp1; T̃ÞfðeqÞī ðp2; T̃ÞR d3p⃗1

ð2πÞ3
d3p⃗2

ð2πÞ3 f
ðeqÞ
i ðp1; T̃ÞfðeqÞī ðp2; T̃Þ

: ð3:28Þ

From Eq. (3.27) it is transparent that if T ¼ Td at early times the entropy exchange processes balance out, as expected from
the condition of thermal equilibrium. Also, once the dark sector particles decouple, the entropies of the two sectors are
separately conserved. The approach to kinetic equilibrium between the two sectors will then be relevant if we start with an
initial temperature asymmetry and when the heavy dark sector species are still relativistic.
We choose to solve the system of coupled differential equations using the scale factor a as the independent variable.

Using Eq. (3.4), we rewrite the evolution equations for the entropies as evolution equations for the temperatures:

dðlnTÞ
dðln aÞ ¼ −

1

h�SvðTÞ
þ svðTÞ
3THðT; TdÞh�SvðTÞ

X
iv

X
id

½−hσvEiivīv→idīdðTÞY2
iv;eq

ðTÞ þ hσvEiidīd→ivīvðTdÞY2
id
�

−
1

HðT; TdÞh�SvðTÞ
X
iv

X
id

hγividiðT; TdÞ
�
T − Td

T

�
Yiv;eqðTÞ;

dðlnTdÞ
dðln aÞ ¼ −

1

h�SdðTdÞ
þ s2vðTÞ
3TdHðT; TdÞsdðTdÞh�SdðTdÞ

X
id

X
iv

f−½hσvEiidīd→ivīvðTdÞ

− hσviidīd→ivīvðTdÞTd lnAid �Y2
id
þ ½hσvEiivīv→idīdðTÞ − hσviivīv→idīdðTÞTd lnAid �Y2

iv;eq
ðTÞg

þ svðTÞ
HðT; TdÞsdðTdÞh�SdðTdÞ

X
id

X
iv

hγidiviðTd; TÞ
�
T − Td

Td

�
Yid ; ð3:29Þ

where we have written explicitly that the Hubble rate H depends both on T and Td, see Eq. (3.10), we have defined

h�SvðTÞ≡ 1þ 1

3

dðln g�SvÞ
dðlnTÞ and h�SdðTdÞ≡ 1þ 1

3

dðln g�SdÞ
dðlnTdÞ

; ð3:30Þ

and have normalized all number densities to the entropy density in the visible sector, defining Yi ≡ ni=sv, with i being any
species—in the visible sector or in the dark sector. For such variables and again using the scale factor a as independent
variable, the Boltzmann equation (3.16) takes the form:

dYid

dðln aÞ ¼ −3Yid

�
1þ h�SvðTÞ

dðlnTÞ
dðln aÞ

�
þ svðTÞ
HðT; TdÞ

�X
iv

½−hσviidīd→ivīvðTdÞY2
id

þ hσviidīd→ivīvðTÞY2
id;eq

ðTÞ� þ
X
jd≠id

½−hσviidīd→jdj̄dðTdÞY2
id
þ hσvijdj̄d→idīdðTdÞY2

jd
�
�
: ð3:31Þ

Equations (3.29) and (3.31) constitute the closed system of differential equations to be solved.

C. Numerical results

As mentioned at the end of Sec. II, we will consider a
dark sector framework with the following fermionic con-
tent: (i) one leptonlike dark fermion χ, with massmχ , which
acts as our dark matter candidate, and (ii) two hadronlike
states, with masses mQU and mQD , that are lighter than χ.
The evolution of the number density of each dark sector
fermionic species is governed by Eq. (3.31). Regarding
scalar messengers, we assume them to be degenerate in

mass such that they are specified by a single mass
parameter mS, and a universal mixing ηS. Meanwhile,
the other parameters relevant for the discussion are:
(i) the Uð1ÞD gauge coupling αD, and (ii) the Yukawa-
like couplings αL and αR, which are taken to be equal
for simplicity. Despite the model residing in a seven-
dimensional parameter space, main trends can be illustrated
on benchmark cases. In particular, unless explicitly stated,
we will start illustrating the framework by focusing on the
following choice of parameters:
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mQU ¼ 10 GeV; mQD ¼ 20 GeV; mS ¼ 10 TeV;

αD ¼ 10−2; and ηS ¼ 0: ð3:32Þ

We will then vary the Yukawa-like coupling αL and
properly adjust mχ , so that the relic density of χ

approximately matches the dark matter density in the
Universe as measured from cosmological observations.
In Fig. 4 we present results for the numerical solution of
the Boltzmann code for four different sets of pairs ðαL;mχÞ.
In each panel a solid line shows, as a function of the inverse
of the temperature in the visible sector T, the evolution of

FIG. 3. The Feynman diagrams for the elastic amplitudes of the dark sector fermions with dark photons (left and center) and with SM
fermions (right). Only the contribution of the diagram on the right is included in the numerical solutions since the two Compton-like
diagrams are by assumption in equilibrium.

FIG. 4. Solutions of the Boltzmann equations for four different benchmark point in parameter space, as specified in Table I. These are
representative of the four regimes labeled region I, II, III, and IV (from left to right and top to bottom) and described in the text. The solid
lines track Yid , the comoving number density normalized over the visible sector entropy, for each fermionic dark species id. The dashed
lines indicate the value of Yid if id were in chemical equilibrium with the visible sector heat bath at temperature T. The dash-dotted line
shows the evolution of ξ≡ Td=T, the ratio of the dark-to-visible sector temperatures.
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the number density for χ, QU and QD, normalized to the
entropy density in the visible sector; such evolution is
followed from an initial time t0, with initial temperature
T0 ¼ 108 GeV, to some low temperature at which all
comoving number densities are frozen to their relic
values. Yid for each dark fermion species id is compared
to the corresponding Yid;eqðTÞ, namely the ratio between
the equilibrium number density nid;eqðTdÞ—assuming
Td ¼ T—and again svðTÞ, which is shown as a dashed
line. This comparison is relevant since the case of Yid
tracking Yid;eq corresponds to the species id being in
chemical equilibrium as well as kinetic equilibrium
between visible and dark sectors. In each panel we also
show, with a dash-dotted line, the temperature ratio
between dark and visible sectors; values of ξðtÞ ¼ Td=T
can be read on the vertical scale on the right-hand side—
notice that, to show more clearly its variation over time, the
range of values displayed is adjusted in each panel (while
the displayed range for Yid, on the left-hand side of each
panel, is kept fixed). Following the general discussion in
Sec. III A, for all benchmark models considered in the plot,
it is assumed that at t0 the dark sector is significantly colder
than the visible sector, starting the numerical solution
with ξðt0Þ ¼ 0.1.
In the four panels of Fig. 4, going from left to right and

top to bottom, αL is progressively increased from a
relatively small value for which the entropy exchanges
between dark and visible sector are inefficient at any time,
up to a regime at which kinetic equilibrium between the two
sectors is reached at the very beginning of the numerical
solution and maintained at temperatures lower than the
chemical decoupling temperature of the lightest dark
fermion. The values of the couplings, the dark fermion
mass spectrum, as well as the results of the relic densities
of the three dark fermions, and the value ξCMB of the
temperature ratio at the CMB epoch, are given in Table I.

To explain trends in Fig. 4, considering the same bench-
mark cases and focusing on χ, in Fig. 5 the effective
interaction rates for relevant processes in Eqs. (3.29) and
(3.31) are compared to the Universe’s expansion rate H
(as usual, as a rule of thumb, a given process is efficient only
when the ratio is larger than one). The pair annihilation rates
into dark photons and/or SM leptons, which are shown
separately, drive chemical decoupling; the role of χ in
restoring and maintaining kinetic equilibrium can be
sketched from the effective energy transfer rate from dark
fermion annihilations and χ elastic scattering on SM leptons,
i.e., the combinations one obtains when factorizing out
Y2
id
=H and Yid=H in, respectively, the second and third term

on the right-hand side (rhs) of Eq. (3.29). In the same plot we
also show that, for all benchmark models, the scattering rate
of χ on dark photons is much larger than H at any temper-
ature, justifying the assumptionof kinetic equilibriumamong
dark sector states.
The four panels in Figs. 4 and 5 correspond to four

different regimes in the parameter space. These are
(i) Region I (top-left plots) This is the regime in which

the portal between dark and visible sectors is
virtually absent, and the pair annihilation into dark
photons enforces chemical equilibrium of fermions
in the dark sector at large temperatures. In this case
the relic density of χ can be estimated as the thermal
freeze-out of a nonrelativistic species from the dark
sector, which is analogous to the freeze-out of a
standard WIMP from the visible sector: Yχ at freeze-
out can be shown to be

Yχ;f:o: ≃
ξf:o:ðmχ=TdÞf:o:
hσviγDmχMPl

; ð3:33Þ

with the dark-sector freeze-out temperature being
about

TABLE I. Numerical values of the couplings and masses used to generate the plots in Fig. 4, as well as their
corresponding results for the relic densities and temperature ratio at CMB. We have chosen the couplings and
masses such that χ would give a relic density that is close to the measured value of the matter density:
Ωh2 ¼ 0.1186. In all cases, we have taken αD ¼ 10−2 and ms ¼ 10 TeV.

Region Coupling Species Mass (GeV) Relic density (Ωh2) Temp. ratio at CMB

I αL ¼ 10−11 χ 1850 0.1183 0.0613
QU 10 2.573 × 10−5

QD 20 4.457 × 10−5

II αL ¼ 1.75 × 10−8 χ 1000 0.1221 0.1856
QU 10 8.948 × 10−5

QD 20 1.520 × 10−4

III αL ¼ 10−4 χ 480 0.1192 0.5712
QU 10 3.866 × 10−4

QD 20 6.499 × 10−4

IV αL ¼ 0.35 χ 5000 0.1239 0.3757
QU 10 2.039 × 10−4

QD 20 3.372 × 10−4
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�
mχ

Td

�
f:o:

≃ ln ðξ2f:o:hσviγDmχMPlÞ

þ 1

2
ln ln ðξ2f:o:hσviγDmχMPlÞ: ð3:34Þ

The relic density of χ is then

Ωχh2 ¼ Ωχh2jξf:o:¼1

ξf:o:ðmχ=TdÞf:o:
ðmχ=TdÞf:o:jξf:o:¼1

: ð3:35Þ

In this regime, the evolution of ξ is obtained by
assuming that the entropies of the dark and visible
sectors are separately conserved. Note that due to the
Universe’s expansion, both Td and T decrease; the
temperature ratio ξ ¼ Td=T increases whenever Td
decreases slower than T. This occurs when a dark
species becomes nonrelativistic and heats up the
dark photon plasma. The ratio reaches a peak at

around T ¼ mQU , and then decreases since SM
photons are heated up by SM degrees of freedom
becoming nonrelativistic, and, especially, at the
QCD phase transition when quarks and gluons are
transformed into bound-state hadrons.

(ii) Region II (top-right plots): The moderate increase in
αL is still insufficient to reach kinetic equilibrium
between the two sectors. The effective energy trans-
fer rate and the elastic scattering rates are still
smaller than H at all temperatures, see Fig. 5.
Nevertheless, the entropy leakage between the two
sectors cannot be ignored, as one can see in the
partial readjustment of ξ in the top-right panel of
Fig. 4. Meanwhile in this regime, the relic density
for χ, while still mostly determined by χ pair
annihilations into dark photons, is also dictated by
pair annihilations of visible sector particles populat-
ing the dark-sector with more dark fermions. This
scheme is reminiscent of the freeze-in production

FIG. 5. Rates (normalized over the Hubble constant) of annihilation (solid lines) and scattering processes (dashed lines) involving the
leptonlike heavy dark fermion [see Eq. (3.16)] into dark photons (γD) and SM states. The rate of entropy exchange is also plotted [see
Eq. (3.27)], and is labeled by Γ=HðTdÞ. The plot refers to the same four benchmark models displayed in Fig. 6 and specified in Table I, as
representative of regions I, II, III, and IV in the parameter space (from left to right and top to bottom).
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mechanism for feebly interacting massive par-
ticles (FIMPs) [58]. As an approximate expression,
Eq. (3.35) still applies, with however a slight increase
in the thermal bath reservoir within which the freeze
out of the thermal component is taking place and a
shift in ξf:o:.

(iii) Region III (bottom-left plots): This is the regime
in which αL is large enough to enforce kinetic
equilibrium between the two sectors from the very
first steps of the numerical solution, up to the freeze
out temperature of the dark matter component (but—
for the specific parameter choice displayed—not up
to the temperature at which the light fermions
become nonrelativistic). It is however still too small
for the χ pair annihilation into SM leptons to play a
role in setting the dark matter relic density; the
annihilation into dark photons is still the dominant
channel and the standard WIMP formula, Eq. (3.1)
applies. Notice that the peak in the temperature ratio
exceeds unity, since the light fermions become
nonrelativistic after kinetic decoupling. It follows
that this is the benchmark case with largest ξCMB,
slightly above the 1σ bound from Planck.

(iv) Region IV (bottom-right plots): This scenario is
similar to region III, except that, concerning the relic
density of χ, αL is sufficiently large for SM lepton-
antilepton pairs to be the dominant final state in the
annihilation rate driving the WIMP rule-of-thumb
formula Eq. (3.1). In the case at hand, αL is also
large enough to ensure kinetic equilibrium between
dark and visible sectors at all temperatures at which
dark fermions are relativistic, hence ξ becomes 1
immediately after t0 and is not increasing further.

The four regions are also shown in the left panel of
Fig. 6, where the relic density of χ is plotted as a function of
αL. We have kept mχ , αD, and ηS fixed for each curve. As
expected from the previous discussion, Ωχh2 is not nec-
essarily a monotonic function of αL and so there are
multiple values of αL giving the same relic density. In
regions I and III, Ωχh2 is independent of αL, since in both
regimes it is the annihilation to dark photons that deter-
mines the relic density of χ. Note that region I is the regime
where the dark sector out of kinetic equilibrium with
respect to the visible sector at all times, while region III
is the regime where kinetic equilibrium holds until, at least,
the chemical freeze-out of χ. Region II is the transition
region between I and III: since the energy/entropy transfers
and freeze-in effects become more efficient as αL increases,
Ωχh2 increases as well. Region IV is the regime in which
annihilations into SM leptons become dominant: following
from Eqs. (3.1) and (3.2), we haveΩχh2 ∝ α−2L . The change
in mχ produces a vertical shift of regions I, II, and III. This
follows from the fact that, for these regimes, the relic
density of χ is determined by the annihilation to dark
photons, and thusΩχh2 ∝ m2

χ . The trend changes for region
IV; we have Ωχh2 ∝ m−2

χ . We also include the case where
the left-right mixing between scalar messengers is maxi-
mal, i.e., ηS ¼ 1 − ðmχ=mϕÞ2; this makes one of the scalar
messengers lighter. A lighter scalar messenger increases the
rate of processes enforcing kinetic equilibrium, which
slightly changes the transition in region II; it also increases
the annihilation rate to SM fermions, leading to the
transition from region III to IV at a smaller αL, as well
as it leads to a decrease in the relic density in region IV.

FIG. 6. Left panel: relic densityΩχh2 of the DM candidate χ vs αL, for fixed αD ¼ 10−2 and initial temperature ratio ξ0 ¼ 0.1. One can
see the effect of changing mχ and the effect of changing the left-right mixing for messenger scalars. The four marked regions are
discussed in the text. Right panel: relic density ofQU relative to the relic density of χ, as a function ofmQU . As expected,ΩUh2 increases
with mQU since the annihilation cross section to dark photons goes as m−2

QU . The Yukawa coupling is taken everywhere to be αL ¼ 0.1.
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The value αL� of the transition between regions III and IV
can be roughly estimated by imposing that the annihilation
cross section to SM species is about the same as the
annihilation to dark photons; this leads to

αL� ≃ αD

�
mS

mχ

�
2

ð1 − ηsÞ: ð3:36Þ

For instance, if ηs ¼ 0, αD ¼ 10−2, and mS=mχ ¼ 2 (as in
the blue curve in the left panel of Fig. 6), we have
αL� ≃ 4 × 10−2.
In the right panel of Fig. 6 we explore how the relic

density of the lighter dark fermions change with their
masses. Given the constraints on light particles with long-
range interactions in DM halos, such relic densities must be
much suppressed compared to Ωχh2, at the level of about
1% or lower. In general, the lighter the dark fermion, the
more efficient the pair production/annihilation is into dark
photons; since chemical decoupling is regulated by this
final state, the relic density decreases accordingly. The right
panel of Fig. 6 indeed shows the expected scaling
ΩUh2 ∝ m2

QU , for each choice of the parameters αD and
mχ . In general a contribution to the matter density below
one percent can be obtained for mQ ≲ 500 GeV. For
example, for αD ¼ 0.1 and mχ ¼ 1 TeV, this upper value
is 40 GeV, while for mχ ¼ 5 TeV the upper value shifts up
to 195 GeV. For αD ¼ 0.01, the upper values are 50 GeV
and 70 GeV, for mχ ¼ 1 TeV and mχ ¼ 5 TeV, respec-
tively. The ratio of the relic densities ofQU over χ is weakly
dependent on αL.

In the left panel of Fig. 7, we show the temperature ratio
at the CMB as a function of αL, for fixed αD, mχ , and mϕ,
while NQ, the number of light dark quarks, and mQ, the
common mass of the dark quarks, are allowed to change
individually. On the right panel of Fig. 7, we present a
contour plot of ξCMB in the mQ − αL plane, for fixed
αD ¼ 10−2, mχ ¼ 1 TeV, and NQ ¼ 2. The contour plot
has been generated by performing a scan of mQ from
10 MeV to 300 GeV, and αL values from 10−10 to 10−1. All
results in Fig. 7 are obtained in numerical solutions of the
Boltzmann code assuming as initial temperature ratio
ξ0 ¼ 0.1. As previously mentioned in Sec. III A, bounds
on Neff constrain extra contributions to the amount of
radiation energy density. This constraint translates to an
upper bound on the temperature ratio at CMB, given
by Eq. (3.7).
There are a few features emerging from Fig. 7. As

expected, at any given αL, the ratio ξCMB increases as the
number of light species NQ increases. In particular, in the
limit of vanishing Yukawa coupling αL, i.e., when the two
sectors do not communicate with each other, ξCMB depends
on NQ only. For our reference model, the scaling is
ξCMB ∝ ð7NQ þ 11Þ1=3. This follows from the fact that
entropy is injected into the dark sector bath when dark
species become nonrelativistic. Since the CMB epoch
occurs at relatively late times, ξCMB does not depend on
mQ. Recall also that in this limit, ξCMB ∝ ξ0 and we are
assuming a rather small ξ0.
Starting from a vanishingly small αL, entropy exchanges

between visible and dark sectors, that tend to equilibrate the

FIG. 7. Left: plot of ξCMB versus αL, for varying mQ at fixed NQ ¼ 1, and for varying NQ at fixed mQ ¼ 1 GeV. The colored regions
correspond to 2 − σ (green), 3 − σ (orange), and >3 − σ (red) bands. Here we have taken ms ¼ 10 TeV, mχ ¼ 1 TeV, and αD ¼ 10−2.
Right: contour plot of ξCMB on the αL −mQ plane, taking the same values of ms, mχ and αD as in the left panel. Each colored regions
correspond to 2 − σ (green), 3 − σ (orange), and >3 − σ (red) bands. The remaining regions correspond to ξCMB that are not excluded at
1σ by the current CMB limit on Neff . The vertical lines correspond to half the masses of the neutral mesons KL and B0, which could
decay into a particle-antiparticle pair of dark quarks. (e.g., see [15]).
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mismatch ξ0 in the initial temperatures, become more
efficient as we increase αL. This leads to increasing
ξCMB. In the left panel of Fig. 7 this is the rising branch
at αL ≲ 10−6. The largest increase is obtained at some
intermediate αL for which kinetic equilibrium is reached at
early times, but is not maintained at the epoch at which χ or
the light dark fermions become nonrelativistic. When these
particles become nonrelativistic, they transfer their entro-
pies mainly to dark photons, which makes ξðtÞ become
larger than 1 at some intermediate temperatures.
If instead αL is large enough to maintain kinetic

equilibrium when dark fermions become nonrelativistic,
entropy injections are shared by the SM degrees of freedom
and the result is a decrease in ξCMB. At the same time the
reverse effect occurs: SM states becoming nonrelativistic
and injecting entropy into the dark sector, rather than just
heating SM photons, with then an increase in ξCMB. The
efficiency in these two-direction exchanges clearly depends
on all parameters regulating kinetic equilibrium between
the two sectors, including mχ , mQ, and the messenger
masses mϕ and mS, as well as on the parameters setting the
temperatures at which the dark fermions become non-
relativistic (regulated also by mχ and mQ). In the left panel
of the figure, we show in particular the αL dependence of
ξCMB for different values mQ and NQ ¼ 1, while the case
NQ ¼ 2 is illustrated for a sample value in the left panel and
in the full range mQ ∈ ð10 MeV; 300 GeVÞ in the right
panel. As the entropy transfer is particularly large at the
QCD phase transition, at a temperature of about 150 MeV
[59], it is crucial whether, at this epoch, Q are relativistic
and/or visible and dark sectors are in kinetic equilibrium.
As seen from Fig. 7, the CMB limits on Neff turn out to

be a very severe constraint on the content of light fermions
in the dark sector. Assuming an αL of at least 10−2, a
favorable situation in order to satisfy the CMB limits at
1 − σ level would be to keep NQ ≤ 2 and take mQ to be at
least 5 GeV. Future tighter constraints on Neff will impact
on the parameter space even more severely.

IV. DIRECT DETECTION SEARCHES

Direct searches test the interactions of darkmatter particles
with ordinary matter. As a preliminary step to project direct
detection limits into our framework, we need to write down
the effective coupling between dark leptons and quarks.
Scattering processes are mostly driven by massless media-
tors: SM and dark photons. Since there is no kinetic mixing
between the SM and the dark photon, the leading contribu-
tions appear at one-loop order, as shown in Fig. 8.
Computing the diagrams in Fig. 8 yields the fol-

lowing dimension 5 (magnetic dipole) and dimension 6
(charge-radius) effective operators1:

L5 ⊃ gD
dðqÞM;γD

2ΛðqÞ
D;γD

ðq̄σμνqÞXμν þ e
dð χÞM;γ

2Λð χÞ
D;γ

ð χ̄σμνχÞFμν ð4:1Þ

L6 ⊃ −gD
cðqÞCR;γD

½ΛðqÞ
CR;γD

�2
ðq̄γνqÞ∂μXμν − e

cð χÞCR;γ

½Λð χÞ
CR;γ�2

ð χ̄γνχÞ∂μFμν

ð4:2Þ

where Fμν and Xμν are, respectively, the field strength
associated with the SM photon and the dark photon. The
dipole and charge-radius couplings, denoted by dM=ΛD and
cCR=½ΛCR�2, respectively, carry additional labels. These
additional labels specify: the fermion they are associated
with, and the massless gauge boson such fermion is coupled
to. In thediscussion belowwewill both show results referring
to a generic framework in which dipole and charge-radius
couplings are treated independently of each other, as well as
focus on our specific framework; in the latter case, they are
given in terms of our model parameters and strong correla-
tions appear. In particular, assuming universal couplings and
gL ¼ gR, we have

FIG. 8. Feynman diagrams for the leading (one-loop) contributions to the coupling between quarks and the dark photon (left) and
(leptonlike) dark fermions and the ordinary photon (right).

1We assume for simplicity that CP invariance is respected in
the dark-sector and there are no electric dipole moments.
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dð χÞM;γ

Λð χÞ
D;γ

¼ αL
4π

mχ

m2
ϕ−

Fð χÞ
D;γðml;mϕ−

; mϕþÞ;
cð χÞCR;γ

½Λð χÞ
CR;γ�2

¼ αL
4π

1

m2
ϕ−

Fð χÞ
CR;γðml;mϕ−

; mϕþÞ

dðqÞM;γD

ΛðqÞ
D;γD

¼ αL
4π

mQ

m2
S−

FðqÞ
D;γD

ðmQ;mS− ; mSþÞ;
cðqÞCR;γD

½ΛðqÞ
CR;γD

�2
¼ αL

4π

1

m2
S−

FðqÞ
CR;γD

ðmQ;mS− ; mSþÞ: ð4:3Þ

The exact expressions for the functions FD and FCR, which are either of order 1 or logarithmically enhanced, are given in
Appendix C. Here we just quote useful approximate expressions assuming that ml ≪ mϕ−

and mQ ≪ mS− :

Fð χÞ
D;γðml;mϕ−

; mϕþÞ ≃ −
�
1þ m2

ϕ−

m2
ϕþ

�

Fð χÞ
CR;γðml;mϕ−

; mϕþÞ ≃ −
�
1

3
ln

�
mϕ−

ml

�
−
1

4

�
−
�
1

3
ln

�
mϕþ

ml

�
−
1

4

��
mϕ−

mϕþ

�
2

FðqÞ
D;γD

ðmQ;mS− ; mSþÞ ≃
�
4 ln

�
mS−

mQ

�
− 2

�
−
�
4 ln

�
mSþ

mQ

�
− 2

��
mS−

mSþ

�
2

FðqÞ
CR;γD

ðmQ;mS− ; mSþÞ ≃
1

36

�
13 − 12 ln

�
mS−

mQ

��
þ 1

36

�
13 − 12 ln

�
mSþ

mQ

���
mS−

mSþ

�
2

: ð4:4Þ

If we plug in typical values of dark-visible couplings and particle masses in the dark sector (where we take
mϕþ ¼ mSþ ¼ 103 TeV), we have

dð χÞM;γ

Λð χÞ
D;γ

≃ ð−1.59 × 10−8 GeV−1Þ
�

αL
10−1

��
mχ

200 GeV

��
10 TeV
mϕ−

�
2

cð χÞCR;γ

½Λð χÞ
CR;γ�2

≃ ð−4.26 × 10−10 GeV−2Þ
�

αL
10−1

��
10 TeV
mϕ−

�
2

g2D
dðqÞM;γD

ΛðqÞ
D;γD

≃ ð2.56 × 10−9 GeV−1Þ
�

αD
10−2

��
αL
10−1

��
mQ

10 GeV

��
10 TeV
mS−

�
2

g2D
cðqÞCR;γD

½ΛðqÞ
CR;γD

�2
≃ ð−1.94 × 10−11 GeV−2Þ

�
αD
10−2

��
αL
10−1

��
10 TeV
mS−

�
2

: ð4:5Þ

A further correlation is with the additional contribution to the magnetic dipole moment of SM leptons predicted in our
framework; this involves a single class of loop diagrams in which the virtual messenger scalars couple with the SM
photon, which is analogous with the bottom-right diagram in Fig. 8 with the particles χ and e exchanged. Such contribution is
given by

dðlÞM;γ

ΛðlÞ
D;γ

¼ αL
4π

mχ

m2
ϕ−

FðlÞ
D;γðmχ ; mϕ−

; mϕþÞ ð4:6Þ

where again FD is order one and can be approximated as

FðlÞ
D;γðmχ ; mϕ− ; mϕþÞ ≈

8>>><
>>>:

−2
�
1þ 8

�
mχ

mϕ−

�
2
�
1 − ln

�
mϕ−

mχ

����
mϕþ
mϕ−

− 1

�
; mχ ≪ mϕ− ≲mϕþ

− 1
3
þ m2

ϕ−

m2

ϕþ
− 1

3

�
1 − mχ

mϕ−

�
; mχ ≲mϕ− ≪ mϕþ :

ð4:7Þ
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In the following we will first analyze separately the cases in
which DM-nucleus scattering is mediated by: (a) the SM
photon, and (b) the dark photon. Case (a) has already been
discussed in the literature, and some results are reproduced
here (see, e.g., [60–64]; see [65] for another possible long-
range interaction for dark matter). Case (b), in which nuclei
carry a (dark) magnetic moment, is explored here for the first
time.We discuss the differential recoil rates, exclusion curves
and projected sensitivities that one obtains considering each
of the two massless mediators. Since both cases (a) and
(b) involve dipole-vector interactions between DM and
nucleons, one expects a term in the scattering amplitude
which scales as the inverse of the momentum transfer, giving
it an enhancement in the recoil rate at small recoil energies.On
the other hand, we demonstrate here that one cannot naively
conclude that the latter is thedominant effect andneglect other
terms. While the enhancement is indeed present, it may get
dominant over other terms only at extremely small recoil
energies. It follows that, for what regards the phenomenology
of the model, dimension 5 operators are not always playing
the main role.

A. Direct detection analysis: An overview

The direct detection differential recoil rate, namely the
number of scattering events per unit time, detector mass
and recoil energy, can be generally written as

dR
dER

¼
X
T

cT
ρ0

mχmT

Z
jv⃗j≥vmin

d3v⃗jv⃗jfðv⃗Þ dσT
dER

: ð4:8Þ

In this equation the product of jv⃗j, the modulus of the
velocity of the DM particle in the detector frame, times the
local DM particle number density, expressed in terms of
the ratio between the local DM density ρ0 and the DMmass
mχ , gives the flux of DM particles in the detector at given
jv⃗j. Such flux is weighted over the velocity distribution for
DM particles in the detector frame fðv⃗Þ and convolved with
the DM-nucleus differential cross section dσT=dER. The
sum in the equation is over target nuclear isotopes T, with
mass mT and relative abundance cT . The integral includes
any jv⃗j large enough to give a recoil energy ER, i.e., larger
than vmin ¼ jq⃗j=ð2μχTÞ, where μχT is the target nucleus-
DM reduced mass, μχT ¼ mχmT=ðmχ þmTÞ, and the
momentum transfer jq⃗j is related to the value of the recoil
energy via ER ¼ jq⃗j2=ð2mTÞ. In what follows, for the
astrophysical dependent quantities ρ0 and fðv⃗Þ, we just
refer to the standard assumptions in the direct detection
community: a local DM halo density of 0.3 GeV=cm3 and
a Maxwellian velocity distribution in the Galactic frame,
with standard values of the velocity dispersion, and of the
circular and escape velocities at the position of the Sun.
While results are mildly dependent on these assumptions,
they do not affect in any way the general discussion.
The DM-nucleus differential cross section dσT=dER is

derived in steps. Given the coupling of DM with quarks,

one retrieves the effective coupling of DM with nucleons.
The general formalism developed to describe nonrelativ-
istic EFT interactions goes as follows: the nonrelativistic
reduction of the Lagrangian density for the elastic scatter-
ing of a heavy DM particle on a proton or a neutron at rest
can be written in terms of a set of 15 Hermitian, leading-
order operators (see e.g., [66,67]), i.e.:

LNREFT ¼
X15
i¼1

X
N¼p;n

cðNÞ
i OðNÞ

i ðq⃗; v⃗⊥; S⃗χ ; S⃗NÞ: ð4:9Þ

Each OðNÞ
i is built out of a different contraction of four

three-vectors: the momentum transfer q⃗; the transverse
component of the DM particle velocity v⃗⊥ (v⃗⊥ · q⃗ ¼ 0); the
spin of the DM particle and of the nucleon, respectively S⃗χ
and S⃗N . The second step is mapping the single-nucleon
interactions into nuclear interactions; the general structure
for the differential cross section takes the form:

dσT
dER

¼ mT

2πjv⃗j2
X8
α¼1

X
τ;τ0¼0;1

Sðττ
0Þ

α ðjv⃗⊥j2; jq⃗j2ÞW̃ðττ0Þ
α ðjq⃗j2Þ;

ð4:10Þ

where the proton-neutron basis has been replaced by the
isospin basis, τ and τ0 are isospin indices, Sα are the dark-

matter response functions containing contractions of OðNÞ
i

terms and depend on the coefficients appearing in (4.9),
v⃗⊥ ≡ v⃗þ q⃗=ð2μÞ, and W̃α are the nuclear response func-
tions which are essentially form factors accounting for the
composite structure of the nucleus.
Once we have the differential recoil rate, the expected

number of direct detection events can be computed
using [68]:

Np ¼ MTE

Z
∞

0

ϕðERÞ
dR
dER

dER; ð4:11Þ

where M is the mass of the detector, TE is the exposure
time, and ϕðERÞ is the efficiency curve specific to a
particular experiment. We can then use the data on the
observed number of scattering events in a direct detection
experiment, to constrain DM-nucleon interactions. To
obtain the usual exclusion curves with some specified
confidence level 1 − α, one must, in principle, obtain the
confidence interval ½0; Np�� from the posterior probability
distribution of Np, given the observed number of events
No. A fixed value of Np� corresponds to a contour in the
space of parameters that we are trying to constrain.
Alternatively, to obtain exclusion plots, we use here the
likelihood ratio test. First compute the Poisson likelihood
functions:
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LðNo; bjNpÞ ¼
ðbþ NpÞNo

No!
e−ðbþNpÞ; ð4:12Þ

where b is the number of background events, and then
obtain the test statistic

λ≡ −2 ln
LðNo ¼ 0; bjNpÞ
LðNo; bjNpÞ

: ð4:13Þ

The test statistic λ follows a half-chi-squared distribution
with one degree of freedom. The exclusion region will then
correspond to those values of Np, which give probabilities
above the confidence level: for 90% CL, we reject those
values of Np which give λ≲ −1.64. In what follows we
shall use DDCalc [68,69], a package written specifically for
dark-matter direct detection calculations, including the
calculation of differential recoil rates and likelihoods
needed for obtaining parameter constraints at some speci-
fied confidence level. We will apply the procedure above to
compare against the latest results from the XENON
collaboration, which has produced the strongest upper
limits in the DM particle mass range of interest for our
framework [70], and to infer projected sensitivities of one
of the proposed next-generation direct detection experi-
ments, the DARWIN experiment [71], as representative of
nearly final target for the direct detection field. In both
cases we have checked that our results match closely
published results when the DM nucleus interaction is

assumed to be mediated by the standard spin independent
operator.

B. SM photon-mediated processes

We consider first interactions mediated by SM photons
(abbreviated as γm in the following). The dipole and charge
radius effective coupling between dark leptons and SM
quarks can be readily extracted from the effective operators
in Eqs. (4.1) and (4.2):

Lγ ¼ e2
�
dðχÞM;γ

ΛðχÞ
D;γ

1

q2
ðχ̄iσμνqνχÞ þ

cðχÞCR;γ

½ΛðχÞ
CR;γ�2

ðχ̄γμχÞ
�

×

�
2

3
ūγμu −

1

3
d̄γμd

�
; ð4:14Þ

where qμ is the transfer four-momentum. We map the quark
operators to the nucleon operators by using the form factors
in [72]. We have

q̄ðk2Þγμqðk1Þ

→ N̄ðk2Þ
�
Fðq=NÞ
1 ðq2Þγμ þ i

2mN
Fðq=NÞ
2 ðq2Þσμνqν

�
Nðk1Þ;

ð4:15Þ

where N ¼ n, p, and the Fðq=NÞ
i coefficients are QCD

matrix elements. Applying (4.15) to the quark vector
current in (4.14) we get

2

3
ūγμu −

1

3
d̄γμd → p̄γμpþ 1

2mp

�
2

3
Fðu=pÞ
2 −

1

3
Fðd=pÞ
2

�
ðp̄iσμαqαpÞ þ

1

2mn

�
2

3
Fðu=nÞ
2 −

1

3
Fðd=nÞ
2

�
ðn̄iσμαqαnÞ: ð4:16Þ

Following the prescription for mapping dark-matter-nucleon operators to their nonrelativistic counterparts [66,73], the
effective, nonrelativistic DM-nucleon interaction is

Lγ ¼ e2
dð χÞM;γ

Λð χÞ
D;γ

�
2mp

jq⃗j2 O
ðpÞ
5

�
þ e2

dð χÞM;γ

Λð χÞ
D;γ

�
−

1

2mχ
OðpÞ

1

�
þ e2

cð χÞCR;γ

½Λð χÞ
CR;γ�2

OðpÞ
1 þ e2

dð χÞM;γ

Λð χÞ
D;γ

FðNÞ
�
2

mN
OðNÞ

4 −
2mN

jq⃗j2 OðNÞ
6

�
: ð4:17Þ

Here we have adopted the standard operator numbering

OðNÞ
1 ≡ 1χ1N; OðNÞ

4 ≡ S⃗χ · S⃗N; OðNÞ
5 ≡ iS⃗χ ·

�
q⃗
mN

× v⃗⊥
�
; OðNÞ

6 ≡
�
S⃗χ ·

q⃗
mN

��
S⃗N ·

q⃗
mN

�
; ð4:18Þ

whereO1 andO4 are the operators commonly labeled as, respectively, spin-independent and spin-dependent couplings, and

FðpÞ ≡ 1 −
2

3
Fðu=pÞ
2 þ 1

3
Fðd=pÞ
2 ≈ −0.772; FðnÞ ≡ −

2

3
Fðu=nÞ
2 þ 1

3
Fðd=nÞ
2 ≈ 1.934: ð4:19Þ
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Notice that we have organized the terms in (4.17) in powers
of jq⃗j; the first line is of order 1=jq⃗j, while the second line is
of order jq⃗j0. Looking at (4.17), we see that the γm dipole
interaction gives an O5 contribution, which is long-range
and coherent, a O1 contribution, which is a contact term
and coherent, and other short-range, incoherent contribu-
tions. On the other hand, the γm CR interaction gives only a
contact, coherent O1 contribution. We summarize this
information in Table II.
Coherent terms are likely to provide the largest con-

tributions to the recoil spectrum. Depending on the relative

size of the corresponding couplings, the recoil spectrum
can either be dominated by dipole or charge-radius inter-
actions. We address this issue by treating first the two
couplings, namely dð χÞM;γ=Λ

ð χÞ
D;γ and cð χÞCR;γ=½Λð χÞ

CR;γ�2, as inde-
pendent free parameters. In the right panel of Fig. 9,
assuming that only one of them is nonzero, we show the
90% confidence level exclusion curve from XENON1T
data and the projected sensitivity curve for DARWIN as a
function of the dark matter mass mχ . Solid lines refer to the
case when the γm CR interaction is switched off, with
values of γm dipole coupling shown on vertical axis on the

TABLE II. Types of DM-nucleon interactions mediated by Standard Model and dark photons, and classifications
of the nonrelativistic operators generated from such interactions. For a given relativistic operator in the second
column, the corresponding nonrelativistic interactions are listed as effectively long-range/contact (i.e., of order 1=jq⃗j
or jq⃗j0) and coherent/incoherent.

Mediator DM-nucleon operator Coherent Incoherent

SM photon ð χ̄iσμνqνχÞðN̄γμNÞ Long-range O5 None
Contact O1 O4, O6

ð χ̄γμχÞðN̄γμNÞ Long-range None None
Contact O1 None

Dark photon ðN̄iσμνqνNÞð χ̄γμχÞ Long-range None O3

Contact O1 O4, O6

ðN̄γμNÞð χ̄γμχÞ Long-range None None
Contact O1 None

FIG. 9. Left: 90% confidence level exclusion curves from XENON1T data and the projected sensitivity curves for DARWIN for a few
values of the dark matter massmχ in the plane dipole coupling versus CR coupling. The diagonal line gives a visual guidance to separate
the regime in which, for a Xenon target and typical detector setups, direct detection rates are dominated by γm dipole interactions or γm
CR interactions. The orange region is the area spanned by a large sample of models within our dark sector setup. The horizontal and
vertical lines represent a projection of the muon magnetic dipole moment limit into a limit on, respectively, the dipole and CR
coefficients, within our framework and for two representative cases: a model with large mixing for scalar messenger (Proj. 1) and one
with small mixing (Proj. 2), see the text for details; the intersection points only should be compared with the result for XENON1T and
DARWIN. Right: exclusion and projected sensitivity curves (90% CL) versus dark matter mass in case of either γm dipole interactions
only (solid lines, referring to the vertical scale displayed on the left-hand side) or γm CR interactions only (dashed lines, referring to the
vertical scale displayed on the right-hand side); also shown are the limits on the γm dipole coefficient derived within our framework and
the same parameter choices as in the left panel.
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left-hand side; on the other hand, dashed lines assume that
γm dipole interactions are negligible, with values of the γm
CR coupling displayed on the scale on the right-hand side.
In the left panel of Fig. 9, we show instead exclusion

and sensitivity curves in the plane dð χÞM;γ=Λ
ð χÞ
D;γ versus

cð χÞCR;γ=½Λð χÞ
CR;γ�2 for a few representative values of the DM

mass mχ : 200 GeV (dot-dashed lines), 1 TeV (dashed
lines), and 2 TeV (solid lines). In this plot the solid diagonal
line, which runs through the area where exclusion and
sensitivity curves bend, approximately marks the separa-
tion between the dipole-dominated (region above the line)
and the CR-dominated regimes (region below the line). In
fact, looking at the expression for the recoil rate contribu-
tion from γm dipole interactions, this is mostly driven by
the long-range and coherent O5 operator and can be
approximated as:

�
dR
dER

�
dip;γ

≃Cα2em

�
dð χÞM;γ

Λð χÞ
D;γ

�2
4sχðsχ þ1Þ

3

1

4πER
Z2; ð4:20Þ

the γm CR contribution is instead of the form:

�
dR
dER

�
CR;γ

≃ Cα2em

�
cð χÞCR;γ

½Λð χÞ
CR;γ�2

�2
mT

2πv2
Z2: ð4:21Þ

Using Xe as nuclear target, and considering experiments
which lose sensitivity below a recoil energy of few keV, we
find:

�
dR
dER

�
dip;γ

,�
dR
dER

�
CR;γ

				
ER≃5 keV

≳ 1

⇒
dð χÞM;γ

Λð χÞ
D;γ

,
cð χÞCR;γ

½Λð χÞ
CR;γ�2

≳ 50 GeV ð4:22Þ

which is about the delimiter shown in the plot.
There are additional information displayed in Fig. 9.

The orange polygonal region in the left panel denotes the
pairs of dipole-CR coefficients obtainable in our model
assuming αL ¼ 10−1, mχ ∈ ½200 GeV; 2 TeV�, mϕ−

∈
½1 TeV; 100 TeV�, mϕþ ∈ f11 TeV; 103 TeVg, and mχ ≤
mϕ−

≤ mϕþ . As it can be seen, there are models in our
framework that are excluded by XENON1T data, while
DARWIN will cut deeper into the parameter space. The full
region is within the area delimited by the condition in (4.22).
Hence we can infer that within our framework, for what
concerns γm interactions, the dipole term contributesmore to
the direct detection rate than the CR term, although the latter
can be relevant as well. Note that this statement depends on
the type of the nuclear target and on the range of recoil
energies at which the experiment is sensitive.

Finally, in Fig. 9 we try to compare the direct detection
limits and projected sensitivities with other constraints.
There is no other process in which the operators introduced
in Eq. (4.14) are tested at a significant level, and hence a
model independent comparison is not possible. On the
other hand, as described above, within our framework the
loop diagrams giving rise to these interactions are closely
related to the loop diagrams contributing to the magnetic
dipole moments of leptons, which in turn are providing
among the tightest constraints on our model, recall the
discussion in Sec. II A. For reference, we consider the case
in which the dark matter particle χ is coupled to muons
(stronger constraints would follow in case of coupling to
electrons; the limits get essentially irrelevant in case of
coupling to tau leptons). The relation between coefficients
of the different operators is simply:

dð χÞM;γ

Λð χÞ
D;γ

¼ Fð χÞ
D;γðmμ; mϕ−

; mϕþÞ
FðμÞ
D;γðmχ ; mϕ−

; mϕþÞ
dðμÞM;γ

ΛðμÞ
D;γ

;

cð χÞCR;γ

½Λð χÞ
CR;γ�2

¼ 1

mχ

Fð χÞ
CR;γðmμ; mϕ−

; mϕþÞ
FðμÞ
D;γðmχ ; mϕ−

; mϕþÞ
dðμÞM;γ

ΛðμÞ
D;γ

: ð4:23Þ

Comparing against the experimental measurement of the
muon magnetic dipole moment [36], we find:

dðμÞM;γ

ΛðμÞ
D;γ

≤ 1.80 × 10−8 GeV−1: ð4:24Þ

We project this limit into a limit on the γm dipole and γmCR
coefficients (hence comparing at this level against direct
detection) choosing two representative set of values for the
masses of the corresponding scalar messenger: in the first—
towhich we refer as projection 1—we choose a large mixing
configuration ðmϕ−

; mϕþÞ ¼ ð10 TeV; 103 TeVÞ, while in
the other—to which we refer as projection 2—we consider a
small mixing case ðmϕ−

; mϕþÞ ¼ ð10 TeV; 11 TeVÞ. In the
left panel of Fig. 9 derived limits on γm dipole and γm CR
coefficients are shown, respectively, as horizontal and
vertical lines; the line-style reflects again the three sample
choices for mχ and the position of the crossing point of
horizontal and vertical lines for the samemodel configuration
should be compared to the corresponding direct detection
curves (crossing points correspond to physical models in our
framework, and, as expected, they all lie in the dipole
dominated region). We see that in general, within our
framework, the muon magnetic dipole moment limit is more
constraining than the current direct detection limit. On the
other hand, future detectors will be more sensitive to smaller
dark matter dipole moments. Note that the effective dipole
operator requires a change in the chirality of the external
fermion, either through a sizable ηs or amass insertion on the
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external leg.When ηs is sufficiently small, i.e., ηs ≪ mμ=mχ ,
the muon dipole is proportional to mμ while the dark matter
dipole is proportional to mχ : in this case the muon dipole
tends to be much smaller than the dark matter dipole. The
projected limits on the γm dipole are also shown in the right
panel of Fig. 9; given that physical models in our framework
have a direct detection rate mostly driven by γm dipole
interactions to a first approximation the displayed limits can
be compared to the direct detection curves shown in this plot

is the case cð χÞCR;γ=½Λð χÞ
CR;γ�2 ¼ 0, reinforcing the picture just

described.

C. Dark photon-mediated processes

The same procedure outline above can be applied to
compute the recoil rate in case of processes that are dark
photon-mediated (in the following: γDm); we start with the
effective SM quark-dark lepton interaction:

LγD ¼ g2D
dðqÞM;γD

ΛðqÞ
D;γD

1

q2
ðq̄iσμνqνqÞð χ̄γμ χÞ þ g2D

cðqÞCR;γD

½ΛðqÞ
CR;γD

�2
ðq̄γμqÞð χ̄γμ χÞ: ð4:25Þ

Borrowing the terminology from the previous section, we identify the first and second terms in (4.25) as γDm dipole and
charge-radius (CR) interactions, respectively. We then map the quark vector and tensor currents to nucleonic operators. The
nonrelativistic reduction of the effective DM-nucleon interaction yields

LγD ¼ g2D
dðNÞ
M;γD

ΛðNÞ
D;γD

�
−
2mN

jq⃗j2 O3

�
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�
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ΛðNÞ
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1

2mN
þ dðNÞ
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ΛðNÞ
D;γD

1

mN

�
O1 þ g2D

cðNÞ
CR;γD

½ΛðNÞ
CR;γD

�2
O1 þ g2D

dðNÞ
M;γD

ΛðNÞ
D;γD

�
2

mχ
O4 −

2m2
N

mχ jq⃗j2
O6

�
;

ð4:26Þ

where O1, O4, and O6 are defined in Eq. (4.18), and

O3 ≡ iS⃗N ·

�
q⃗
mN

× v⃗⊥
�
: ð4:27Þ

Using the numerical values of QCDmatrix elements obtained from lattice calculations [72], the coefficients in Eq. (4.26) are
in the form

dðNÞ
M;γD

ΛðNÞ
D;γD

≡ fT



dðqÞM;γD

ΛðqÞ
D;γD

�
;

dðNÞ
M;γD;1

ΛðNÞ
D;γD

≡ fT1



dðqÞM;γD

ΛðqÞ
D;γD

�
;

cðNÞ
CR;γD

½ΛðNÞ
CR;γD

�2
≡ f1



cðqÞCR;γD

½ΛðqÞ
CR;γD

�2
�
; ð4:28Þ

with

fT ¼ 0.59� 0.023; fT1 ¼ 0.79; f1 ¼ 3; ð4:29Þ

and angle brackets denoting weighted averages that can be
safely removed if γDm dipole and CR coefficients are about
the same for all light quarks. Analogously to the previous
case, we organized the terms in Eq. (4.26) in powers of jq⃗j,
with the first line of order 1=jq⃗j and the second of order
jq⃗j0. In the nonrelativistic reduction, the γDm dipole
interaction has led to: (i) a long-range, incoherent O3 term,
(ii) a contact, coherent O1 term, and (iii) other short-range,
incoherent terms; the γDm CR interaction has generated
only one leading operator corresponding to a contact,
coherent O1 term. A summary with relativistic operators
and the corresponding nonrelativistic reductions is given in
Table II.

Similarly towhat has been done above for the γm case, we
consider first the γDm dipole and CR couplings to a quark as
two independent coefficients, without any reference to our
scheme. In the left panel of Fig. 10, 90% confidence level
exclusion curve from XENON1T data and projected sensi-

tivity curves for DARWIN are shown in the plane g2Dd
ðqÞ
M;γD

=

ΛðqÞ
D;γD

versus g2Dc
ðqÞ
CR;γD

=½ΛðqÞ
CR;γD

�2 for a few sample values of
the dark matter mass: mχ ¼ 200 GeV, 1 TeV, 2 TeV. In the
right panel they are shown insteadversusmass, assuming that
only one among the two coefficients are different from zero.
The solid diagonal line in the left panel marks again the
separation between the dipole-dominated region and CR-
dominated region, aswe can check looking at the expressions
for the differential recoil rate. As in the previous case, CR
interactions contributes with the coherent term in the form
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�
dR
dER

�
CR;γD

≃ C0
�
g2D

cðqÞCR;γD

½ΛðqÞ
CR;γD

�2
�2

mT

2πv2
f21A

2; ð4:30Þ

where A is the atomic number of the target nucleus. On the
other hand and contrary to the previous case, for γDm dipole

interaction we cannot a priori assume that the long-range
effects dominate: given that the long-range O3 term is
incoherent, we need to keep also the short-range coherent
O1 term, getting

�
dR
dER

�
dip;γD

≃ C0
�
g2D

dðqÞM;γD

ΛðqÞ
D;γD

�2
f2T
2π
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2

3ER
hS⃗2Ni þ

4mT

v2m2
N
hðL⃗ · S⃗NÞ2i þ

A2mT

v2m2
N

�
1

2
þ fT1

fT

�
2
�
; ð4:31Þ

where SN is the spin operator for the valence nucleon
(which is usually relevant for odd-even nuclei) and L is the
angular momentum associated with the internal motion of
the valence nucleon. Among the three contributions on the
right-hand-side, although the first has a mN=ER enhance-
ment, this has to compete with the large A3 and 1=v2

enhancements in the third term; moreover, the second term
is most often subleading compared to the third given that
hðL⃗ · S⃗NÞ2i ≈ l2max, where lmax is the maximum angular
quantum number attained by the valence nucleon, typically
much less than A. Comparing first and third contributions,
one finds that the long-range 1=ER enhancement takes over
only at recoil energies

ER ≲ ð1.5 × 10−7 keVÞ
�
sNðsN þ 1Þ

3=4

��
v

10−3

�
2
�
100

A

�
3

;

ð4:32Þ
i.e., in a range which is irrelevant for a Xe target (as well as
any target presently considered) and current detector
technologies. Hence the third term is the leading one,
and when taking the ratio between the rate in Eq. (4.31) and
that in Eq. (4.30) one finds

�
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ð4:33Þ

It follows that:�
dR
dER

�
dip;γD

��
dR
dER

�
CR;γD

≳ 1

⇒ g2D
dðqÞM;γD

ΛðqÞ
D;γD

,
g2D

cðqÞCR;γD

½ΛðqÞ
CR;γD

�2
≳ 2.8 GeV; ð4:34Þ

which is the delimiter shown as a solid diagonal line in the
left panel of Fig. 10.

Turning now to constraints competing with direct detec-
tion results, contrary to the γm case, there is a strong model-
independent bound impacting directly on the first operator in
Eq. (4.25). In fact, the γDm dipole for quarks can be
responsible for enhancing the cooling rate in supernovae,
allowing for nucleon-nucleon Bremsstrahlung emission of
dark photons; as discussed in Sec. II A, there is a tight
constraint one can extrapolate from the observed neutrino
flux from SN1987A. The detailed derivation of the limit is
rather involved and beyond the scope of this paper; we
consider instead an extrapolation from analogous scenarios.
In particular, Raffelt [42] computed the energy loss rate due
to nucleon-nucleon Bremsstrahlung with axion emission,
with the axion entering through a derivative couplingwith the
nucleon axial current.More recently an improved calculation
has been implemented in [74]. For the case of γD emission,
Dobrescu [40] assumed that the rate of energy loss is two
times larger than in the case of axion emission, given that the
dark photon has two propagating degrees of freedom. If one
writes the effective nucleon-γD interaction as

LNγD ¼ gNγD

4mN
N̄σμνNXμν; ð4:35Þ

followingRaffelt and imposing that the extra energy loss rate
per unit mass induced by the novel Bremsstrahlung process
cannot exceed 1019 erg g−1 s−1, we find:

gNγD ≲ 1.414 × 10−9f1=2: ð4:36Þ

Here,f is a fudge factor accounting for the deviation from the
Dobrescu assumptionon the cooling ratewhen actually using
(4.1) (in the following we will just set it to 1). Mapping the
quantity gNγD to the quark dipole moment in (4.1), and then
mapping to the γDm dipole coefficient constrained by direct
detection, we have

g2D
dðqÞM;γD

ΛðqÞ
D;γD

≲ ð4.18 × 10−10 GeV−1Þf1=2
�

αD
10−2

�
1=2

×

�
gðlimÞ
NγD

1.414 × 10−9

��
1 GeV
mN

��
0.6
fT

�
: ð4:37Þ
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This limit is shown with horizontal solid lines in the left and
right panels of Fig. 10, for αD ¼ 10−2 (black) and αD ¼
5 × 10−2 (green). As it can be seen, at face value, the
supernova limit is constraining γDm dipole of quarks at a
comparable levelwith respect to current direct detection data,
while, regarding future sensitivities, direct detection experi-
ments are going to be more competitive. On the other hand,

the validity of the supernova limit has been recently ques-
tioned [75] since it relies on a mainstream picture for the
explosion mechanism of core-collapse supernovae which is
still, to a large extent, not well established; in alternative
scenarios the limit in Eq. (4.36) simply does not apply. In this
respect, information on the γDm dipole of quarks derived
from direct detection searches seem more reliable.

FIG. 11. Recoil spectra due to γm interactions (left panel) and γDm interactions (right panel) for sample models in our dark sector
framework. For each of the two cases, representative points in the parameter space have been chosen to have either a dipole-dominated
spectrum (Pt. 1), or a CR-dominated spectrum (Pt. 2); model parameters are specified in Table III. Contributions to the rate due to the
dipole operator and the CR operators are shown separately, respectively with solid and dashed lines. Note the long-range 1=ER
enhancement appears only in case of γm dipole interactions.

FIG. 10. 90% CL exclusion curves from XENON1T data and projected sensitivity curves for DARWIN in case of γD-mediated DM-
nucleus scatterings, in the plane dipole-CR coefficients (left panel) or when assuming that only one of the two coefficients is nonzero
(right panel, solid lines and the vertical scale on the left side refer to the γDm dipole operator, while dashed lines and the vertical scale on
the right side refer to the γDm CR operator). Model-independent supernova cooling limit on the γDm dipole for quarks are displayed as
horizontal solid lines for two representative values of αD: 10−2 (black) and 5 × 10−2 (green). Also shown in the left panel are two results
specific for our dark sector framework: vertical dashed lines represent the projection of the supernova limit on the γDm CR coefficient—
the intersection points with horizontal lines should be compared against direct detection results; the colored regions correspond to two
representative scans in the model parameter space, see the text for details.
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While the γDm CR operator does not contribute the dark
photon emission via nucleon-nucleon Bremsstrahlung, a
constraint can be indirectly derived within our framework
implementing

g2D
cðqÞCR;γD

½ΛðqÞ
CR;γD

�2
¼ 1

mQ

FðqÞ
CR;γD

ðmQ;mS− ;mSþÞ
FðqÞ
D;γD

ðmQ;mS− ;mSþÞ
g2D

dðqÞM;γD

ΛðqÞ
D;γD

: ð4:38Þ

In the left panel of Fig. 10, limits on the γDm CR
coefficient, as derived from the supernova limit on the
γDm dipole, are shown with dashed vertical lines; these
projections are obtained assuming mQ ¼ 10 GeV,
mS− ¼ 10 TeV, and mSþ ¼ 103 TeV. Note that vertical
and horizontal lines cross in the dipole-dominated regime,
hence the relevant comparison with direct detection rates is
still in the limit of vanishing CR coefficient. Dipole
dominance is typical for the parameter space in our scheme.
In the left panel of Fig. 10 we show the regions in the
dipole-CR plane corresponding to a scan with αL ¼ 10−1,
mQ ∈ ½10 GeV; 50 GeV�, mS− ∈ ½10TeV;103TeV�, mSþ ¼
1.001 × 103 TeV, and either αD ¼ 10−2 (grey region) or
αD ¼ 5 × 10−2 (green region); in scanning the model
space, we ensured that mQ ≤ mS− ≤ mSþ . Most models
are in the dipole-dominated area, with only tails extending
into the CR-dominated regime in case the γDm dipole gets
severely suppressed when S− and Sþ are very close in mass
and hence the mixing ηs is very small.
In Fig. 11, we plot recoil spectra in case of γm

interactions (left panel) and γDm interactions (right panel)
for sample models in our dark sector framework. For each
mediator, we have chosen two representative points such
that “Pt. 1” lies in the corresponding dipole-dominated
region, while “Pt. 2” in the CR-dominated regime: the
corresponding model parameters are specified in Table III.
Contributions to the differential rate of the dipole and CR
operators are shown separately. Notice the qualitatively
different shapes of the dipole contribution in the two cases:
the 1=ER scaling due to long-range interactions can be seen
in the γm case, while contact interactions dominate in the
γDm case. Notice also that Pt. 2 in the γm case is rather
peculiar, since to find a model within the CR-dominated

regime we were forced to consider a relatively small mχ ,
below the range considered for the scan displayed in Fig. 10
and what we expect typically in our framework.

D. Comparison with relic density limits

We are now ready to combine direct detection results
with the constraints on our framework obtained by impos-
ing that the relic density of χ matches the observed
abundance of DM in the Universe, ΩDMh2 ¼ 0.1200�
0.0012 [47]. We refer to our minimal 6-parameter setup,
slicing the parameter space along the mχ − αL plane for
reference values of the dark photon coupling αD, of the
common scalar messenger mass parameter mϕ ¼ mS and
mixing ηs, and of the mass mQ for light quarklike dark
fermions. In Fig. 12, along the curves labeled “relic” the
dark matter relic density matches the observed dark matter
density. In the “south-east” direction, i.e., toward larger mχ

and smaller αL, the χ relic density exceeds the observed dark
matter density, assuming that αD is fixed. In the opposite
direction, the χ relic density is a fraction of the observed dark
matter density. These portions of the parameter space could
be, in principle, recovered referring to, e.g., nonthermal
production of dark matter or nonstandard cosmological
frameworks, see, e.g., [76,77]).
In the top-left panel a maximal scalar mixing ηs ¼ 1 −

ðmχ=mϕÞ2 has been considered, while in the top-left panel
it is tuned to zero; results for two representative values of
αD are displayed, namely 10−2 (solid lines) and 5 × 10−2

(dashed lines), while the other parameters are fixed to
mQ ¼ 10 GeV and mS ¼ 10 TeV. Each isolevel curve for
Ωχh2 exhibits the features described by the decoupling
regimes for χ discussed in Sec. III C. The upper branch
corresponds to region IV, where the χχ̄ annihilation to SM
leptons controls the final relic density of χ. The vertical
branch corresponds to region III where the annihilation to
γD determines the final relic density of χ: note that, in order
to have the same relic density, increasing αD requires
increasing mχ as well, which is consistent with the expect-
ation from Eq. (3.2). The remaining branch corresponds to
region II, where the final relic density is still determined by
the γD channel, but in the relic density regime given by

TABLE III. List of representative models chosen for generating the recoil spectra in Fig. 11.

Mediator Model parameters Dipole ðGeV−1Þ CR ðGeV−2Þ
γ (Pt. 1) αL ¼ 0.1, mχ ¼ 1 TeV 1.45 × 10−7 5.21 × 10−10

mϕ−
¼ 10 TeV, mϕþ ¼ 11 TeV

γ (Pt. 2) αL ¼ 0.1, mχ ¼ 50 GeV 2.70 × 10−8 1.81 × 10−9

mϕ−
¼ 5 TeV, mϕþ ¼ 6 TeV

γD (Pt. 1) αL ¼ 0.1, αD ¼ 10−2, mQ ¼ 10 GeV 1.28 × 10−10 9.95 × 10−13

mS− ¼ 50 TeV, mSþ ¼ 103 TeV
γD (Pt. 2) αL ¼ 0.1, αD ¼ 10−2, mQ ¼ 10 GeV 2.55 × 10−12 2.09 × 10−11

mS− ¼ 14 TeV, mSþ ¼ 14.014 TeV
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Eq. (3.35), where a larger αL leads to larger ξf:o: and thusmχ

must decrease accordingly (since hσviγD goes as m−2
χ ). The

branch for region I is not shown in these plots, but would
simply correspond to a vertical line at lower values of αL.
Concerning direct detection limits and projected sensi-

tivities, in the top-left panel of Fig. 12, the XENON1T and
DARWIN curves (solid lines corresponding again to
αD ¼ 10−2, while dashed lines to 5 × 10−2) are driven
by the γDm dipole operator, given that in the large mixing
scenario this gives a larger event rate than the γDm CR
operator: we find that a large part of the upper branches
with correct value of the relic density is already excluded
by current direct detection limits, while a larger portion of
region III will be tested with DARWIN. On the other hand,

in the top-right panel ηs ¼ 0 suppresses the role of the γDm
dipole operator and the γDm CR operator provides instead
the bulk of the direct detection events: while current
experiments do not test this regime, DARWIN will be
able to probe the branch with correct relic density in the
region IV and a portion of the one in region III. Note
however that these results depend to some extent on the
assumption of universality in the scalar messenger sector:
the displayed direct detection curves would shift to larger
values of αL in case some hierarchy between ϕ and S is
assumed, with a larger mS relaxing the direct detection
limits, without any significant impact on the result for the
relic density of χ, given that the S scalars only interact with
SM quarks.

FIG. 12. The lines labeled “relic” correspond to model parameters αL andmχ for which the relic density of χ matches the abundance of
dark matter in the Universe. In the top-left panel the case of maximal mixing for scalar messengers is considered, while in the top-right a
case with ηs ¼ 0 is displayed; in these two panels solid lines refer to the choice of αD ¼ 10−2 and dashed lines to αD ¼ 5 × 10−2, while
the other parameters the model are fixed to sample values, see the text for details. Also displayed in two top panels are XENON1T limits
and DARWIN sensitivity curves due to γDm interactions, mainly due to the dipole operator in case of large mixing and the CR operator
in case of zero mixing; solid and dashed lines refer again to the two sample values of αD. In the bottom panel the four relic density
isolevel curves from the top panels are reproduced to be shown against XENON1T and DARWIN results in case γm interactions are
included while γDm interactions are switched off (by e.g., raising the mass scale for scalar messengers in the quark sector); the dipole
term is dominant and results do not depend on ηs or αD.
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A tighter connection appears with limits and projected
sensitivities when including γm interactions; having artifi-
cially switching off γDm interactions, in the bottom panel of
Fig. 12 we show the curves stemming from the γm dipole
coupling, together againwith the relic density isolevel curves
in case of both ηs ¼ 1 − ðmχ=mϕÞ2 and ηs ¼ 0 (in this plot
we are always the dipole-dominated region in Fig. 9, hence
the γm CR coupling plays a minor role). Such results look
less constraining than for γDm interactions, however they do
not depend on mS or ηs, and hence can be more solidly
compared against the relic density lines: we find that
XENON1T data are in fact excluding part of the upper
branch at small ηs which was not tested via the γDm
operators, as well as that DARWIN will have a sizable
impact in probing our scenario.

V. SUMMARY AND CONCLUSIONS

It is plausible that the solution to the dark matter problem
may be in a context in which, on top of one or more
particles accounting for dark matter, there are several extra
states and/or extra forces. In this work, we have considered
a toy model realization of a multicomponent dark sector,
with an additional unbroken U(1) gauge interaction, medi-
ated by a massless dark photon, and with portal interactions
between dark fermions and SM fermions through scalar
messengers. The model is characterized by: (i) the dark
U(1) coupling αD, (ii) the Yukawa-like portal couplings
αL;R, and (iii) the masses of the scalar messengers and the
dark fermions. Despite its simplicity, this model has a rich
dynamics and several phenomenological consequences. Its
stable relics can provide a significant additional radiation
component, as well as match the measured dark matter
density in the Universe, with dark components having
sizable interactions with ordinary matter as well as non-
negligible self-interactions.
To characterize these features and have reliable estimates

of final particle densities and temperatures, we have
introduced a properly extended system of coupled
Boltzmann equations, which track simultaneously the
number density of several particle species, as well as
entropy and energy exchanges between the dark and visible
sectors. We have solved it numerically, implementing a
few procedures allowing for fast—but very accurate—
solutions. The target is to have a leptonlike dark fermion χ
as the dark matter candidate, a requirement which selects
viable regions in the model parameter space, without
however singling out a definite scheme for the dark matter
generation in the early Universe. In fact, depending on the
strength of the Yukawa portal between visible and dark
sector, we have identified four different regimes for the χ
production, ranging from the limit of a WIMPlike scenario
in a totally decoupled dark sector, to a FIMP-like gen-
eration in case of intermediate coupling, and up to a
standard WIMP framework when the two sectors come
and stay in kinetic equilibrium all the way through the

chemical decoupling of all dark sector species. As a
consequence, our framework is not very predictive regard-
ing the mass scale of the dark matter candidate, which
we can only point to be rather heavy, in the range, say,
500 GeV–10 TeV, with portal couplings all the way from
about αL ≃ 10−2 − 1, down to around 10−9 − 10−7.
The result on the relic density for leptonlike dark fermion

χ is weakly dependent on the choice for the masses of the
lighter quarklike dark fermions Q. The latter can have a
negligible contribution to the Universe matter density, say
below 1% with respect to the heavy dark lepton contribu-
tion, if there is a sizable mass splitting between χ and Q,
saymQ ≲ 100 GeV formχ ≳ 1 TeV. On the other hand, the
presence of light dark fermions enters critically in setting
the temperature ratio ξ between dark photons and SM
photons at the kinetic decoupling between the two sectors;
this is one of the most critical observables in our model,
since the CMB constraint on the amount of extra radiation
in the Universe (usually given in terms of the effective
number of neutrinolike species Neff ) limits ξ to be at most
0.6 (at the 3 − σ level). For a given portal coupling,
constraints on the number and masses of light quarklike
dark fermions follow: e.g., in a scenario with two light dark
quarks (NQ ¼ 2) and the early-time temperature ratio
initialized to ξ0 ¼ 0.1, the limit on ξCMB is satisfied at
1 − σ level for any dark quark mass mQ if αL ≲ 10−7; for
αL ≃ 10−3,mQ lighter than 10 GeV (2 GeV) are excluded at
1 − σ (at 2 − σ); if αL ≃ 10−1,Q lighter than about 0.5 GeV
are excluded at more than 3 − σ.
Regarding other constraints on our scenario, we checked

its testability with direct detection searches. The elastic
scattering of the dark matter candidate χ on a nucleus can
be mainly driven by dipole (dimension 5) or charge radius
(dimension 6) interactions mediated by either the SM
photon or the dark photon. We have analyzed on general
grounds the interplay among the different operators, dis-
cussing features in the recoil spectrum and enlightening
that long-range effects are not always predominant (as
usually assumed in this context). After deriving current
limits and projected sensitivities for next-generation detec-
tors in terms of generic dipole and charge radius couplings,
we have applied the results to our specific toy model,
showing, e.g., that the DARWIN experiment will cover a
significant portion of the parameter space in which χ is a
viable dark matter candidate, as well as it will be com-
petitive against the tightest (but model-dependent) con-
straints at present, including extra contributions to the
magnetic dipole moments of leptons and extra cooling of
stellar systems.
This exploratory work on a particular realization of a

multicomponent dark sector model, can be extended further
by investigating more general early-time initial conditions
as well as a further extension of the particle content or more
general particle interactions. Furthermore aspects are also
not discussed here, such as its mapping on precision and
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accelerator physics, or further cosmological and astrophysi-
cal implications, including, e.g., the level of dark matter
self-interactions. Some of this directions will be inves-
tigated in future work.
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APPENDIX A: MATRIX ELEMENTS AND
SOMMERFELD ENHANCEMENT

In writing the collision term in the right-hand side of the
Boltzmann equations in Sec. III, we need the amplitude
squared of the relevant annihilation and elastic scattering
amplitudes. Regarding the annihilation processes, the dark
fermions can annihilate to dark photons or SM fermions
(see Fig. 1). The squared amplitudes in case of χ (the
expressions for Q are specular) are given by

jMj2χχ̄→2γD
¼ 32π2α2DQ

4
χ

�
tu −m2

χð3tþ uÞ −m4
χ

ðt −m2
χÞ2

−
2m2

χðs − 4m2
χÞ

ðt −m2
χÞðu −m2

χÞ
þ tu −m2

χð3uþ tÞ −m4
χ

ðu −m2
χÞ2

�
;

jMj2
χχ̄→ll̄

¼ 4π2½ðα2L þ α2RÞðm2
χ þm2

l − tÞ2 þ 8αLαRm2
χm2

l �
�

1

t −m2
ϕþ

þ 1

t −m2
ϕ−

�
2

;

jMj2
χRχ̄R→lLl̄L

¼ 16π2α2L
ðm2

χ þm2
l − tÞ2

ðt −m2
ϕÞ2

; ðA1Þ

where s, t, and u are the standard Mandelstam variables.
When computing the pair annihilation cross section of dark
fermions we need to include the Sommerfeld enhancement
induced by the long-range attractive force mediated by dark
photons [78] (the importance of this nonperturbative effect
in the context of dark matter annihilations was first pointed
out by [79]); for such Coulomb term, the enhancement
can be computed analytically and added as a multiplicative
factor to the cross section σ0 accounting for contact
interactions

σ ¼ σ0SðvÞ with SðvÞ ¼ παD
v

1

1 − e−παD=v
; ðA2Þ

where v is the velocity of each annihilating species in the
center-of-mass frame. As for the elastic scattering proc-
esses, the dark fermions can either undergo Compton-like
processes with dark photons, or scatter on SM fermions
(see Fig. 3). The squared amplitudes in case of χ are

jMj2χγD→χγD
¼ −32π2α2DQ4

χ

�
su −m2

χð3sþ uÞ −m4
χ

ðs −m2
χÞ2

−
2m2

χðt − 4m2
χÞ

ðs −m2
χÞðu −m2

χÞ
þ su −m2

χð3uþ sÞ −m4
χ

ðu −m2
χÞ2

�
;

jMj2χl→χl ¼ 4π2½ðα2L þ α2RÞðm2
χ þm2

l − uÞ2 þ 8αLαRm2
χm2

l �
�

1

u −m2
ϕþ

þ 1

u −m2
ϕ−

�
2

;

jMj2
χRl̄L→χRl̄L

¼ 16π2α2L
ðm2

χ þm2
l − sÞ2

ðs −m2
ϕÞ2

: ðA3Þ

APPENDIX B: COMPUTATION OF
THERMAL AVERAGES

In the Boltzmann code developed in Sec. III there are
several quantities involving thermal averages. Starting with
pair annihilation cross sections, a method to efficiently

compute hσviðTÞ, as defined in Eq. (3.17), was detailed
in [53]: Assuming equilibrium distribution functions with
occupation numbers approximated by the exponential in
(3.13), one can manipulate the numerator by performing a
change of integrationvariables from the twomomenta p⃗1 and
p⃗2 to Eþ ≡ E1 þ E2, E− ≡ E1 − E2 and s, with the integral
in the first two that can be performed analytically, giving
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hσviðTÞ ≃ 1

8m4T½K2ðm=TÞ�2

×
Z

∞

4m2

ds σðsÞ ffiffiffi
s

p ðs − 4m2ÞK1ð
ffiffiffi
s

p
=TÞ; ðB1Þ

whereK1ðzÞ and K2ðzÞ are the modified Bessel functions of
order 1 and 2, respectively. The same method can be applied
to hσvEiðTÞ, see the definition in Eq. (3.28), obtaining

hσvEiðTÞ ≃ 1

8m4T½K2ðm=TÞ�2

×
Z

∞

4m2

ds σðsÞsðs − 4m2ÞK2ð
ffiffiffi
s

p
=TÞ: ðB2Þ

Both these expressions are very convenient when coming to
their numerical implementation: for any given particle
physics model, one can first tabulate the cross sections σ

as a function of s, and then link to such tabulations for a fast
computation of thermal averages at any T in the temperature
evolution equations.
On the other hand, an analogous shortcut cannot be

implemented in thermal averages for momentum transfer
rates. Referring generically to the scattering process
iþ B → iþ B, the thermally averaged momentum transfer
rate hγiBiðTi; TBÞ is a function of the temperature of both
the species i and bath particles B, see Eqs. (3.26) and
(3.24), and such dependences cannot be simply factorized,
making the implementation in the numerical Boltzmann
code CPU-demanding. When investigating the kinetic
decoupling of massive dark matter particles i from the heat
bath, since this typically occurs in the regime at which the
temperature Ti is small compared to the particle mass mi,
[56,80] noticed that the dependence on the particle momen-
tum pi in γiB can be approximately dropped, thereby
allowing to replace hγiBiðTi; TBÞ with γiBðEi ¼ mi; TBÞ.

FIG. 13. Plots of the thermal average of the momentum transfer rate, hγi (solid blue curve), the momentum transfer rate evaluated at
zero momentum (solid orange curve), and the momentum transfer rate evaluated at the stationary point E ¼ E�ðTDMÞ (green crosses), as
functions of the bath temperature T̃. The process being considered here is Compton scattering between dark fermions, with mass
mDM ¼ 1 TeV and temperature TDM, and dark photons which serve as the heat bath. The dark coupling is chosen to be αD ¼ 10−2.
Notice the large deviation between the blue and orange curves when TDM ≫ mDM. On the other hand, there is a good agreement between
γðE ¼ E�ðTDMÞ; T̃Þ and hγiðTDM; T̃Þ.
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When the scattering species is relativistic, this is not a fair
estimate; on the other hand, we can still use it as a guideline
for a better approximation: At Ti ≪ mi the occupation
number in the integrand at the numerator of the lhs of
Eq. (3.26) is sharply peaked at the stationary point Ei ¼ mi
and γiBðEi; TBÞ simply picks up the contribution coming
from the stationary point. On the other hand, when Ti ≳mi,
the occupation number has a relatively longer tail at higher
energies. The prefactor ðE2

i −m2
i Þ3=2 in the integral cannot

be neglected, and, to extract the peak contribution, one has to
search for the stationary point of the function

FðEiÞ ¼
Ei

Ti
−
3

2
ln ðE2

i −m2
i Þ; ðB3Þ

which is now at

E�ðTiÞ ¼
3Ti

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ
9T2

i

4

r
: ðB4Þ

Note that going back to the limit Ti ≪ mi, one correctly
retrieves E� ¼ mi þOðTiÞ. The agreement between
hγiðTi; TBÞ and γðEi ¼ E�ðTiÞ; TBÞ is very good, as shown
in a sample case in Fig. 13.

APPENDIX C: LOOP CALCULATIONS

We report here a few details regarding the computation
of the γ and γD vertex functions represented by the loop
diagrams in Fig. 8. For the γD vertex function, involving a
SM quark q on the external legs and a quarklike dark
fermion Q (with Uð1ÞD charge QQ) and scalar messengers
S� in the loop, we have

q̄ðk0ÞiΓμ
γDqðkÞ ¼ gDQQq̄ðk0Þ

X
λ¼�

��
g2L þ g2R

2

�
Iμa;γDðmQ;mSλ ; k; qÞ þ ðλÞgLgRmQI

μ
b;γD

ðmQ;mSλ ; k; qÞ
�
qðkÞ; ðC1Þ

where qμ is the momentum transfer. For the γ vertex function, with a leptonlike dark fermion χ on the external legs and the
corresponding lepton (with Uð1Þem charge Ql) and messengers scalars ϕ� in the loop, we have

χ̄ðk0ÞiΓμ
γ χðkÞ ¼ eQlχ̄ðk0Þ

X
λ¼�

��
g2L þ g2R

2

�
Iμa;γðml;mϕλ

; k; qÞ þ ðλÞgLgRmlI
μ
b;γðml;mϕλ

; k; qÞ
�
χðkÞ: ðC2Þ

The functions Ia and Ib are loop integrals, defined as

Iμa;Vðmf;ms; k; qÞ≡
Z

d4l
ð2πÞ4

� ð=lþ qÞγμ=lþm2
fγ

μ

Dðl; mfÞDðlþ q;mfÞDðk − l; msÞ
þ sV

ð2lþ qÞμð=k − =lÞ
Dðl; msÞDðlþ q;msÞDðk − l; mfÞ

�
;

Iμb;Vðmf;ms; k; qÞ≡
Z

d4l
ð2πÞ4

�
γμ=lþ ð=lþ qÞγμ

Dðl; mfÞDðlþ q;mfÞDðk − l; msÞ
þ sV

ð2lþ qÞμ
Dðl; msÞDðlþ q;msÞDðk − l; mfÞ

�
; ðC3Þ

where we introduced the function Dðp;mÞ≡ p2 −m2, while sγ ¼ 1 and sγD ¼ −1. The sV sign structure is motivated by
the form of the interaction Lagrangian in Eqs. (2.1) and (2.2): a dark fermion and its corresponding messenger scalar must
have opposite Uð1ÞD charges, while a SM fermion and its corresponding messenger scalar must have the same Uð1Þem
charge.
The additional contribution to the magnetic dipole moment of SM leptons predicted in our dark sector framework is

computed from the γ vertex function having SM leptons as external legs and a loop with χ and ϕ�. We find

l̄ðk0ÞiΓμ
γ lðkÞ ¼ eQll̄ðk0Þ

X
λ¼�

��
g2L þ g2R

2

�
Jμaðmχ ; mϕλ

; k; qÞ þ ðλÞgLgRmχJ
μ
bðmχ ; mϕλ

; k; qÞ
�
lðkÞ; ðC4Þ

where

Jμaðmf;ms; k; qÞ≡
Z

d4l
ð2πÞ4

ð2lþ qÞμð=k − =lÞ
Dðl; msÞDðlþ q;msÞDðk − l; mfÞ

Jμbðmf;ms; k; qÞ≡
Z

d4l
ð2πÞ4

ð2lþ qÞμ
Dðl; msÞDðlþ q;msÞDðk − l; mfÞ

: ðC5Þ
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Notice that only one term appears in these loop factors; this
follows from the fact that the messenger scalars have SM
quantum numbers, while the dark leptons do not.
Loop factors are computed using the standard Feynman

trick to rewrite denominators. A UV cutoff needs to be
introduced since Ia, Ib, and Ja are logarithmically

divergent; as a renormalization condition, the vertex func-
tion at zero momentum transfer qμ is subtracted to each
vertex function. Finally, dipole and charge-radius terms are
extracted at leading order in a momentum expansion of the
vertex functions. The general structure is

f̄ðk0ÞΓμ
VfðkÞ ¼

dðfÞM;V

ΛðfÞ
D;V

½f̄ðk0ÞiσμνqνfðkÞ� þ q2
cðfÞCR;V

½ΛðfÞ
CR;V �2

½f̄ðk0ÞγμfðkÞ�: ðC6Þ

Following the notation introduced in Eqs. (4.3) and (4.6), we find

Fð χÞ
D;γðml;mϕ−

; mϕþÞ ¼ −2
�
I1

�
mϕþ

mϕ−

;
ml

mϕ−

�
þ I1

�
1;

ml

mϕ−

��

Fð χÞ
CR;γðml;mϕ−

; mϕþÞ ¼ −
1

6

�
I2

�
mϕþ

mϕ−

;
ml

mϕ−

�
þ I2

�
1;

ml

mϕ−

��

FðqÞ
D;γD

ðmQ;mS− ; mSþÞ ¼ −2
�
I3

�
mSþ

mS−

;
mQ

mS−

�
− I3

�
1;

mQ

mS−

��

FðqÞ
CR;γD

ðmQ;mS− ; mSþÞ ¼
1

6

�
I4

�
mSþ

mS−

;
mQ

mS−

�
þ I4

�
1;

mQ

mS−

��

FðlÞ
D;γðmχ ; mϕ−

; mϕþÞ ¼ 2

�
I1

�
mϕþ

mϕ−

;
mχ

mϕ−

�
− I1

�
1;

mχ

mϕ−

��
; ðC7Þ

where we introduced the following functions

I1ða; bÞ≡ 1

2ðb2 − a2Þ3
�
−2a2b2 ln

�
b2

a2

�
þ b4 − a4

�

I2ða; bÞ≡ 1

2ðb2 − a2Þ4
�
2ðb6 − a6Þ ln

�
b2

a2

�
− 3ðb2 − a2Þ2ðb2 þ a2Þ

�

I3ða; bÞ≡ 1

ðb2 − a2Þ3
�
ðb2 − a2Þ2 − a2ðb2 − a2Þ ln

�
b2

a2

��

I4ða; bÞ≡ 1

6ðb2 − a2Þ4
�
6ðb6 þ a6Þ ln

�
b2

a2

�
− 4ðb6 − a6Þ − 9ðb2 − a2Þ3

�
: ðC8Þ
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