8 research outputs found

    The effect of low-level laser irradiation (In-Ga-Al-AsP - 660 nm) on melanoma in vitro and in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) <it>in vitro </it>and the <it>in vivo </it>development of melanoma in mice after laser irradiation.</p> <p>Methods</p> <p>We performed a controlled <it>in vitro </it>study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The <it>in vivo </it>mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm<sup>2</sup>, irradiance 2.5 W/cm<sup>2 </sup>and irradiation times of 60s (dose 150 J/cm<sup>2</sup>) and 420s (dose 1050 J/cm<sup>2</sup>) respectively.</p> <p>Results</p> <p>There were no statistically significant differences between the <it>in vitro </it>groups, except for an increase in the hypodiploid melanoma cells (8.48 ± 1.40% and 4.26 ± 0.60%) at 72 h post-irradiation. This cancer-protective effect was not reproduced in the <it>in vivo </it>experiment where outcome measures for the 150 J/cm<sup>2 </sup>dose group were not significantly different from controls. For the 1050 J/cm<sup>2 </sup>dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups.</p> <p>Conclusion</p> <p>LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm<sup>2</sup>) and high dose (1050 J/cm<sup>2</sup>) significantly increases melanoma tumor growth <it>in vivo</it>.</p

    An experimental study of low-level laser therapy in rat Achilles tendon injury

    Get PDF
    The aim of this controlled animal study was to investigate the effect of low-level laser therapy (LLLT) administered 30 min after injury to the Achilles tendon. The study animals comprised 16 Sprague Dawley male rats divided in two groups. The right Achilles tendons were injured by blunt trauma using a mini guillotine, and were treated with LLLT or placebo LLLT 30 min later. The injury and LLLT procedures were then repeated 15 hours later on the same tendon. One group received active LLLT (λ = 904 nm, 60 mW mean output power, 0.158 W/cm2 for 50 s, energy 3 J) and the other group received placebo LLLT 23 hours after LLLT. Ultrasonographic images were taken to measure the thickness of the right and left Achilles tendons. Animals were then killed, and all Achilles tendons were tested for ultimate tensile strength (UTS). All analyses were performed by blinded observers. There was a significant increase in tendon thickness in the active LLLT group when compared with the placebo group (p < 0.05) and there were no significant differences between the placebo and uninjured left tendons. There were no significant differences in UTS between laser-treated, placebo-treated and uninjured tendons. Laser irradiation of the Achilles tendon at 0.158 W/cm2 for 50 s (3 J) administered within the first 30 min after blunt trauma, and repeated after 15 h, appears to lead to edema of the tendon measured 23 hours after LLLT. The guillotine blunt trauma model seems suitable for inflicting tendon injury and measuring the effects of treatment on edema by ultrasonography and UTS. More studies are needed to further refine this model

    The low level laser therapy (LLLT) operating in 660 nm reduce gene expression of inflammatory mediators in the experimental model of collagenase-induced rat tendinitis

    No full text
    International audienceTendinopathy is a common disease with a variety of treatments and therapies. Laser therapy appears as an alternative treatment. Here, we investigate the effects of laser irradiation in an experimental model of tendinitis induced by collagenase injection on rats' Achilles tendon, verifying its action in important inflammatory markers. Male Wistar rats were used and divided into five groups: control saline (C), non-treated tendinitis (NT) and tendinitis treated with sodium diclofenac (D) or laser (1 J) and (3 J). The tendinitis was induced by collagenase (100 μg/tendon) on the Achilles tendon, which was removed for further analyses. The gene expression for COX-2; TNF-α; IL-6; and IL-10 (RT-PCR) was measured. The laser irradiation (660 nm, 100 mW, 3 J) used in the treatment of the tendinitis induced by collagenase in Achilles tendon in rats was effective in the reduction of important pro-inflammatory markers such as IL-6 and TNF-α, becoming a promising tool for the treatment of tendon diseases
    corecore