376 research outputs found

    Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron

    Get PDF
    The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d_e, in the range of 10^(βˆ’27) to 10^(βˆ’30) eΒ·cm. The EDM is an asymmetric charge distribution along the electron spin (S) that is also asymmetric under T. Using the polar molecule thorium monoxide, we measured d_e = (–2.1Β±3.7_(stat)Β±2.5_(syst)) Γ— 10βˆ’29 eΒ·cm. This corresponds to an upper limit of ❘d_e❘ < 8.7 Γ— 10^(βˆ’29) eΒ·cm with 90% confidence, an order of magnitude improvement in sensitivity relative to the previous best limit. Our result constrains T-violating physics at the TeV energy scale

    Noninvasive monitoring of myocardial function after surgical and cytostatic therapy in a peritoneal metastasis rat model: assessment with tissue Doppler and non-Doppler 2D strain echocardiography

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>We sought to evaluate the impact of different antineoplastic treatment methods on systolic and diastolic myocardial function, and the feasibility estimation of regional deformation parameters with non-Doppler 2D echocardiography in rats.</p> <p>Background</p> <p>The optimal method for quantitative assessment of global and regional ventricular function in rats and the impact of complex oncological multimodal therapy on left- and right-ventricular function in rats remains unclear.</p> <p>Methods</p> <p>90 rats after subperitoneal implantation of syngenetic colonic carcinoma cells underwent different onclogical treatment methods and were diveded into one control group and five treatment groups (with 15 rats in each group): group 1 = control group (without operation and without medication), group 2 = operation group without additional therapy, group 3 = combination of operation and photodynamic therapy, group 4 = operation in combination with hyperthermic intraoperative peritoneal chemotherapy with mitomycine, and group 5 = operation in combination with hyperthermic intraoperative peritoneal chemotherapy with gemcitabine, group 6 = operation in combination with taurolidin i.p. instillation. Echocardiographic examination with estimation of wall thickness, diameters, left ventricular fractional shortening, ejection fraction, early and late diastolic transmitral and myocardial velocities, radial and circumferential strain were performed 3–4 days after therapy.</p> <p>Results</p> <p>There was an increase of LVEDD and LVESD in all groups after the follow-up period (P = 0.0037). Other LV dimensions, FS and EF as well as diastolic mitral filling parameters measured by echocardiography were not significantly affected by the different treatments. Values for right ventricular dimensions and function remained unchanged, whereas circumferential 2D strain of the inferior wall was slightly, but significantly reduced under the treatment (-18.1 Β± 2.5 before and -16.2 Β± 2.9 % after treatment; P = 0.001) without differences between the single treatment groups.</p> <p>Conclusion</p> <p>It is feasible to assess dimensions, global function, and regional contractility with echocardiography in rats under different oncological therapy. The deformation was decreased under overall treatment without influence by one specific therapy. Therefore, deformation assessment with non-Doppler 2D strain echocardiography is more sensitive than conventional echocardiography for assessing myocardial dysfunction in rats under oncological treatment.</p

    Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia.

    Get PDF
    N6-methyladenosine (m6A) is an abundant internal RNA modification1,2 that is catalysed predominantly by the METTL3-METTL14 methyltransferase complex3,4. The m6A methyltransferase METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but the potential of therapeutic applications targeting this enzyme remains unknown5-7. Here we present the identification and characterization of STM2457, a highly potent and selective first-in-class catalytic inhibitor of METTL3, and a crystal structure of STM2457 in complex with METTL3-METTL14. Treatment of tumours with STM2457 leads to reduced AML growth and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m6A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various mouse models of AML, specifically targeting key stem cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA-modifying enzymes represents a promising avenue for anticancer therapy

    Large sub-clonal variation in <i>Phytophthora infestans</i> from recent severe late blight epidemics in India

    Get PDF
    Abstract The population structure of the Phytophthora infestans populations that caused the recent 2013–14 late blight epidemic in eastern India (EI) and northeastern India (NEI) was examined. The data provide new baseline information for populations of P. infestans in India. A migrant European 13_A2 genotype was responsible for the 2013–14 epidemic, replacing the existing populations. Mutations have generated substantial sub-clonal variation with 24 multi-locus genotypes (MLGs) found, of which 19 were unique variants not yet reported elsewhere globally. Samples from West Bengal were the most diverse and grouped alongside MLGs found in Europe, the UK and from neighbouring Bangladesh but were not linked directly to most samples from south India. The pathogen population was broadly more aggressive on potato than on tomato and resistant to the fungicide metalaxyl. Pathogen population diversity was higher in regions around the international borders with Bangladesh and Nepal. Overall, the multiple shared MLGs suggested genetic contributions from UK and Europe in addition to a sub-structure based on the geographical location within India. Our data indicate the need for improved phytosanitary procedures and continuous surveillance to prevent the further introduction of aggressive lineages of P. infestans into the country

    Carboxylic ester hydrolases from hyperthermophiles

    Get PDF
    Carboxylic ester hydrolyzing enzymes constitute a large group of enzymes that are able to catalyze the hydrolysis, synthesis or transesterification of an ester bond. They can be found in all three domains of life, including the group of hyperthermophilic bacteria and archaea. Esterases from the latter group often exhibit a high intrinsic stability, which makes them of interest them for various biotechnological applications. In this review, we aim to give an overview of all characterized carboxylic ester hydrolases from hyperthermophilic microorganisms and provide details on their substrate specificity, kinetics, optimal catalytic conditions, and stability. Approaches for the discovery of new carboxylic ester hydrolases are described. Special attention is given to the currently characterized hyperthermophilic enzymes with respect to their biochemical properties, 3D structure, and classification

    Melanopsin-expressing amphioxus photoreceptors transduce light via a phospholipase C signaling cascade

    Get PDF
    Β© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e29813, doi:10.1371/journal.pone.0029813.Melanopsin, the receptor molecule that underlies light sensitivity in mammalian β€˜circadian’ receptors, is homologous to invertebrate rhodopsins and has been proposed to operate via a similar signaling pathway. Its downstream effectors, however, remain elusive. Melanopsin also expresses in two distinct light-sensitive cell types in the neural tube of amphioxus. This organism is the most basal extant chordate and can help outline the evolutionary history of different photoreceptor lineages and their transduction mechanisms; moreover, isolated amphioxus photoreceptors offer unique advantages, because they are unambiguously identifiable and amenable to single-cell physiological assays. In the present study whole-cell patch clamp recording, pharmacological manipulations, and immunodetection were utilized to investigate light transduction in amphioxus photoreceptors. A Gq was identified and selectively localized to the photosensitive microvillar membrane, while the pivotal role of phospholipase C was established pharmacologically. The photocurrent was profoundly depressed by IP3 receptor antagonists, highlighting the importance of IP3 receptors in light signaling. By contrast, surrogates of diacylglycerol (DAG), as well as poly-unsaturated fatty acids failed to activate a membrane conductance or to alter the light response. The results strengthen the notion that calcium released from the ER via IP3-sensitive channels may fulfill a key role in conveying - directly or indirectly - the melanopsin-initiated light signal to the photoconductance; moreover, they challenge the dogma that microvillar photoreceptors and phoshoinositide-based light transduction are a prerogative of invertebrate eyes.This work was supported by the National Science Foundation of the USA (grant 0918930)

    Novel IgG-degrading enzymes of the IgdE protease family link substrate specificity to host tropism of <i>Streptococcus</i> species

    Get PDF
    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use

    Internal Ribosomal Entry Site-Mediated Translation Is Important for Rhythmic PERIOD1 Expression

    Get PDF
    The mouse PERIOD1 (mPER1) plays an important role in the maintenance of circadian rhythm. Translation of mPer1 is directed by both a cap-dependent process and cap-independent translation mediated by an internal ribosomal entry site (IRES) in the 5β€² untranslated region (UTR). Here, we compared mPer1 IRES activity with other cellular IRESs. We also found critical region in mPer1 5β€²UTR for heterogeneous nuclear ribonucleoprotein Q (HNRNPQ) binding. Deletion of HNRNPQ binding region markedly decreased IRES activity and disrupted rhythmicity. A mathematical model also suggests that rhythmic IRES-dependent translation is a key process in mPER1 oscillation. The IRES-mediated translation of mPer1 will help define the post-transcriptional regulation of the core clock genes
    • …
    corecore