43 research outputs found

    Expanding the phenotype of SPARC-related osteogenesis imperfecta: clinical findings in two patients with pathogenic variants in SPARC and literature review

    Get PDF
    BACKGROUND: Secreted protein, acidic, cysteine rich (SPARC)-related osteogenesis imperfecta (OI), also referred to as OI type XVII, was first described in 2015, since then there has been only one further report of this form of OI. SPARC is located on chromosome 5 between bands q31 and q33. The encoded protein is necessary for calcification of the collagen in bone, synthesis of extracellular matrix and the promotion of changes to cell shape. METHODS: We describe a further two patients with previously unreported homozygous SPARC variants with OI: one splice site; one nonsense pathogenic variant. We present detailed information on the clinical and radiological phenotype and correlate this with their genotype. There are only two previous reports by Mendozo-Londono et al and Hayat et al with clinical descriptions of patients with SPARC variants. RESULTS: From the data we have obtained, common clinical features in individuals with OI type XVII caused by SPARC variants include scoliosis (5/5), vertebral compression fractures (5/5), multiple long bone fractures (5/5) and delayed motor development (3/3). Interestingly, 2/4 patients also had abnormal brain MRI, including high subcortical white matter changes, abnormal fluid-attenuated inversion in the para-atrial white matter and a large spinal canal from T10 to L1. Of significance, both patients reported here presented with significant neuromuscular weakness prompting early workup. CONCLUSION: Common phenotypic expressions include delayed motor development with neuromuscular weakness, scoliosis and multiple fractures. The data presented here broaden the phenotypic spectrum establishing similar patterns of neuromuscular presentation with a presumed diagnosis of 'myopathy'

    Homozygous Resistance to Thyroid Hormone β: Can combined anti-thyroid drug and triiodothyroacetic acid treatment prevent cardiac failure?

    Get PDF
    Resistance to Thyroid Hormone beta (RTHβ) due to homozygous THRB defects is exceptionally rare, with only five cases reported worldwide; cardiac dysfunction, which can be life-threatening, is recognised in the disorder. Here we describe the clinical, metabolic, ophthalmic and cardiac findings in a nine-year old boy harbouring a biallelic THRB mutation (R243Q), along with biochemical, physiological and cardiac responses to carbimazole and triiodothyroacetic acid (TRIAC) therapy. The patient exhibits recognised features (goitre, non-suppressed TSH levels, upper respiratory tract infections, hyperactivity, low body mass index) of heterozygous RTHβ, with additional characteristics (dysmorphic facies, winging of scapulae) and more markedly elevated thyroid hormone levels, associated with the homozygous form of the disorder. Notably, an older sibling with similar clinical features and probable homozygous RTHβ, had died of cardiac failure at age 13 yrs. Features of early dilated cardiomyopathy in our patient prompted combination treatment with carbimazole and TRIAC. Careful titration of therapy limited elevation in TSH levels and associated increase in thyroid volume. Subsequently, sustained reduction in thyroid hormones with normal TSH levels was reflected in lower basal metabolic rate, gain of lean body mass and improved growth and cardiac function. A combination of anti-thyroid drug and TRIAC therapy may prevent hyrotoxic cardiomyopathy and its decompensation in homozygous or even heterozygous RTHβ in which life-threatening hyperthyroid features predominate.Our research is supported by funding from the Wellcome Trust (095564/Z/11/Z to K.C.), National Institute for Health Research Cambridge Biomedical Research Centre (C.M., K.C.), the Great Ormond Street Hospital Children’s Charity (F.V.K., M.D.), and Medical Research Council (MRC Programme no. U105960371 to K.W.). G.E.H. receives research funding from the National Institute for Health Research (United Kingdom) and the Foundation Fighting Blindness (United States)

    Development of the Synarcual in the Elephant Sharks (Holocephali; Chondrichthyes): Implications for Vertebral Formation and Fusion

    Get PDF
    The synarcual is a structure incorporating multiple elements of two or more anterior vertebrae of the axial skeleton, forming immediately posterior to the cranium. It has been convergently acquired in the fossil group ‘Placodermi’, in Chondrichthyes (Holocephali, Batoidea), within the teleost group Syngnathiformes, and to varying degrees in a range of mammalian taxa. In addition, cervical vertebral fusion presents as an abnormal pathology in a variety of human disorders. Vertebrae develop from axially arranged somites, so that fusion could result from a failure of somite segmentation early in development, or from later heterotopic development of intervertebral bone or cartilage. Examination of early developmental stages indicates that in the Batoidea and the ‘Placodermi’, individual vertebrae developed normally and only later become incorporated into the synarcual, implying regular somite segmenta- tion and vertebral development. Here we show that in the holocephalan Callorhinchus milii, uniform and regular vertebral segmentation also occurs, with anterior individual vertebra developing separately with subsequent fusion into a synarcual. Vertebral elements forming directly behind the synarcual continue to be incorporated into the synarcual through growth. This appears to be a common pattern through the Vertebrata. Research into human disor- ders, presenting as cervical fusion at birth, focuses on gene misexpression studies in humans and other mammals such as the mouse. However, in chondrichthyans, vertebral fusion represents the normal morphology, moreover, taxa such Leucoraja (Batoidea) and Callorhinchus (Holocephali) are increasingly used as laboratory animals, and the Callor- hinchus genome has been sequenced and is available for study. Our observations on synarcual development in three major groups of early jawed vertebrates indicate that fusion involves heterotopic cartilage and perichondral bone/mineralised cartilage developing outside the regular skeleton. We suggest that chondrichthyans have potential as ideal extant models for identifying the genes involved in these processes, for application to human skeletal heterotopic disorders

    The clinical and genetic spectrum of autosomal-recessive TOR1A-related disorders.

    Get PDF
    In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival

    Consensus statement on abusive head trauma in infants and young children

    Get PDF
    Abusive head trauma (AHT) is the leading cause of fatal head injuries in children younger than 2 years. A multidisciplinary team bases this diagnosis on history, physical examination, imaging and laboratory findings. Because the etiology of the injury is multifactorial (shaking, shaking and impact, impact, etc.) the current best and inclusive term is AHT. There is no controversy concerning the medical validity of the existence of AHT, with multiple components including subdural hematoma, intracranial and spinal changes, complex retinal hemorrhages, and rib and other fractures that are inconsistent with the provided mechanism of trauma. The workup must exclude medical diseases that can mimic AHT. However, the courtroom has become a forum for speculative theories that cannot be reconciled with generally accepted medical literature. There is no reliable medical evidence that the following processes are causative in the constellation of injuries of AHT: cerebral sinovenous thrombosis, hypoxic-ischemic injury, lumbar puncture or dysphagic choking/vomiting. There is no substantiation, at a time remote from birth, that an asymptomatic birth-related subdural hemorrhage can result in rebleeding and sudden collapse. Further, a diagnosis of AHT is a medical conclusion, not a legal determination of the intent of the perpetrator or a diagnosis of murder. We hope that this consensus document reduces confusion by recommending to judges and jurors the tools necessary to distinguish genuine evidence-based opinions of the relevant medical community from legal arguments or etiological speculations that are unwarranted by the clinical findings, medical evidence and evidence-based literature

    PP10. Evaluation of skin temperature using liquid crystal and infrared thermometers in children attending specialist paediatric rheumatology clinics

    No full text
    Background: Temperature examination of skin overlying joints is a routine part of clinical assessment for joint inflammation. Studies have used infrared thermometer skin temperature measurement as an outcome measure [1]. Little is known, however, regarding normal range of skin temperature, or degree of increase of skin temperature in normal and inflamed joints, in children. Aims: To describe temperature measurement of skin overlying joints in children attending paediatric rheumatology clinic. To compare performance of liquid crystal thermometer (LCT) and infrared thermo-meter (IRT) measurement with clinician hand temperature assessment and joint activity. Methods: Assessment of bilateral knee and ankle skin temperature was undertaken in children attending rheumatology outpatient clinic appointments. Measurements were made using LCT and IRT. Clinician assessment of joint activity (inflamed/non-inflamed) and temperatur
    corecore