1,320 research outputs found
Implementation of a population-based epidemiological rare disease registry: study protocol of the amyotrophic lateral sclerosis (ALS) - registry Swabia
BACKGROUND: The social and medical impact of rare diseases is increasingly recognized. Amyotrophic lateral sclerosis (ALS) is the most prevalent of the motor neuron diseases. It is characterized by rapidly progressive damage to the motor neurons with a survival of 2–5 years for the majority of patients. The objective of this work is to describe the study protocol and the implementation steps of the amyotrophic lateral sclerosis (ALS) registry Swabia, located in the South of Germany. METHODS/DESIGN: The ALS registry Swabia started in October 2010 with both, the retrospective (01.10.2008-30.09.2010) and prospective (from 01.10.2010) collection of ALS cases, in a target population of 8.6 million persons in Southern Germany. In addition, a population based case–control study was implemented based on the registry that also included the collection of various biological materials. Retrospectively, 420 patients (222 men and 198 women) were identified. Prospectively data of ALS patients were collected, of which about 70% agreed to participate in the population-based case–control study. All participants in the case–control study provided also a blood sample. The prospective part of the study is ongoing. DISCUSSION: The ALS registry Swabia has been implemented successfully. In rare diseases such as ALS, the collaboration of registries, the comparison with external samples and biorepositories will facilitate to identify risk factors and to further explore the potential underlying pathophysiological mechanisms
Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship
Optogenetics allows the manipulation of neural activity in freely moving animals with millisecond precision, but its application in Drosophila melanogaster has been limited. Here we show that a recently described red activatable channelrhodopsin (ReaChR) permits control of complex behavior in freely moving adult flies, at wavelengths that are not thought to interfere with normal visual function. This tool affords the opportunity to control neural activity over a broad dynamic range of stimulation intensities. Using time-resolved activation, we show that the neural control of male courtship song can be separated into (i) probabilistic, persistent and (ii) deterministic, command-like components. The former, but not the latter, neurons are subject to functional modulation by social experience, which supports the idea that they constitute a locus of state-dependent influence. This separation is not evident using thermogenetic tools, a result underscoring the importance of temporally precise control of neuronal activation in the functional dissection of neural circuits in Drosophila
Systematically missing confounders in individual participant data meta-analysis of observational cohort studies.
One difficulty in performing meta-analyses of observational cohort studies is that the availability of confounders may vary between cohorts, so that some cohorts provide fully adjusted analyses while others only provide partially adjusted analyses. Commonly, analyses of the association between an exposure and disease either are restricted to cohorts with full confounder information, or use all cohorts but do not fully adjust for confounding. We propose using a bivariate random-effects meta-analysis model to use information from all available cohorts while still adjusting for all the potential confounders. Our method uses both the fully adjusted and the partially adjusted estimated effects in the cohorts with full confounder information, together with an estimate of their within-cohort correlation. The method is applied to estimate the association between fibrinogen level and coronary heart disease incidence using data from 154,012 participants in 31 cohort
A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour
BACKGROUND: For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. CONCLUSIONS/SIGNIFICANCE: We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms
Reliability of the TekScan MatScan® system for the measurement of plantar forces and pressures during barefoot level walking in healthy adults
<p>Abstract</p> <p>Background</p> <p>Plantar pressure systems are increasingly being used to evaluate foot function in both research settings and in clinical practice. The purpose of this study was to investigate the reliability of the TekScan MatScan<sup>® </sup>system in assessing plantar forces and pressures during barefoot level walking.</p> <p>Methods</p> <p>Thirty participants were assessed for the reliability of measurements taken one week apart for the variables maximum force, peak pressure and average pressure. The following seven regions of the foot were investigated; heel, midfoot, 3<sup>rd</sup>-5<sup>th </sup>metatarsophalangeal joint, 2<sup>nd </sup>metatarsophalangeal joint, 1<sup>st </sup>metatarsophalangeal joint, hallux and the lesser toes.</p> <p>Results</p> <p>Reliability was assessed using both the mean and the median values of three repeated trials. The system displayed moderate to good reliability of mean and median calculations for the three analysed variables across all seven regions, as indicated by intra-class correlation coefficients ranging from 0.44 to 0.95 for the mean and 0.54 to 0.97 for the median, and coefficients of variation ranging from 5 to 20% for the mean and 3 to 23% for the median. Selecting the median value of three repeated trials yielded slightly more reliable results than the mean.</p> <p>Conclusions</p> <p>These findings indicate that the TekScan MatScan<sup>® </sup>system demonstrates generally moderate to good reliability.</p
Optical Silencing of C. elegans Cells with Arch Proton Pump
BACKGROUND: Optogenetic techniques using light-driven ion channels or ion pumps for controlling excitable cells have greatly facilitated the investigation of nervous systems in vivo. A model organism, C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. METHODOLOGY/PRINCIPAL FINDINGS: We describe the application of archaerhodopsin-3 (Arch), a recently reported optical neuronal silencer, to C. elegans. Arch::GFP expressed either in all neurons or body wall muscles of the entire body by means of transgenes were localized, at least partially, to the cell membrane without adverse effects, and caused locomotory paralysis of worms when illuminated by green light (550 nm). Pan-neuronal expression of Arch endowed worms with quick and sustained responsiveness to such light. Worms reliably responded to repeated periods of illumination and non-illumination, and remained paralyzed under continuous illumination for 30 seconds. Worms expressing Arch in different subsets of motor neurons exhibited distinct defects in the locomotory behavior under green light: selective silencing of A-type motor neurons affected backward movement while silencing of B-type motor neurons affected forward movement more severely. Our experiments using a heat-shock-mediated induction system also indicate that Arch becomes fully functional only 12 hours after induction and remains functional for more than 24 hour. CONCLUSIONS/SGNIFICANCE: Arch can be used for silencing neurons and muscles, and may be a useful alternative to currently widely used halorhodopsin (NpHR) in optogenetic studies of C. elegans
Evolutionary and pulsational properties of white dwarf stars
Abridged. White dwarf stars are the final evolutionary stage of the vast
majority of stars, including our Sun. The study of white dwarfs has potential
applications to different fields of astrophysics. In particular, they can be
used as independent reliable cosmic clocks, and can also provide valuable
information about the fundamental parameters of a wide variety of stellar
populations, like our Galaxy and open and globular clusters. In addition, the
high densities and temperatures characterizing white dwarfs allow to use these
stars as cosmic laboratories for studying physical processes under extreme
conditions that cannot be achieved in terrestrial laboratories. They can be
used to constrain fundamental properties of elementary particles such as axions
and neutrinos, and to study problems related to the variation of fundamental
constants.
In this work, we review the essentials of the physics of white dwarf stars.
Special emphasis is placed on the physical processes that lead to the formation
of white dwarfs as well as on the different energy sources and processes
responsible for chemical abundance changes that occur along their evolution.
Moreover, in the course of their lives, white dwarfs cross different
pulsational instability strips. The existence of these instability strips
provides astronomers with an unique opportunity to peer into their internal
structure that would otherwise remain hidden from observers. We will show that
this allows to measure with unprecedented precision the stellar masses and to
infer their envelope thicknesses, to probe the core chemical stratification,
and to detect rotation rates and magnetic fields. Consequently, in this work,
we also review the pulsational properties of white dwarfs and the most recent
applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and
Astrophysics Revie
Genomic profiling of CHEK2*1100delC-mutated breast carcinomas
Background: CHEK2*1100delC is a moderate-risk breast cancer susceptibility allele with a high prevalence in the Netherlands. We performed copy number and gene expression profiling to investigate whether CHEK2*1100delC breast cancers harbor characteristic genomic aberrations, as seen for BRCA1 mutated breast cancers. Methods: We performed high-resolution SNP array and gene expression profiling of 120 familial breast carcinomas selected from a larger cohort of 155 familial breast tumors, including BRCA1, BRCA2, and CHEK2 mutant tumors. Gene expression analyses based on a mRNA immune signature was used to identify samples with relative low amounts of tumor infiltrating lymphocytes (TILs), which were previously found to disturb tumor copy number and LOH (loss of heterozygosity) profiling. We specifically compared the genomic and gene expression profiles of CHEK2*1100delC breast cancers (n = 14) with BRCAX (familial non-BRCA1/BRCA2/CHEK2*1100delC mutated) breast cancers (n = 34) of the luminal intrinsic subtypes for which both SNP-array and gene expression data is available. Results: High amounts of TILs were found in a relatively small number of luminal breast cancers as compared to breast cancers of the basal-like subtype. As expected, the
- …