403 research outputs found

    Development of a metalised carbon fiber reinforced plastic (CFRP) antenna reflector for satellite communication

    Get PDF
    The Antenna reflectors made of Carbon Fibre Reinforced Plastics (CFRP) are used in spacecrafts for Satellite Communication in C, S and Ku bands. For futuristic Satellite Communication applications in x2018;Kax2019; band, there is a need of improving the reflectivity for Radio Frequency (RF) signals by metallising the surface of CFRP reflectors. The space qualified CFRP reflectors have been developed by ISRO for various GEOSAT projects but the process for developing a space qualified reflector having a metallized surface has not been established in the country. Recently, efforts in this hither to fore unexplored domain have been made jointly by Space Application Center, Ahemadabad and National Aerospace lab, Bangalore to develop reflectors with metallized surface

    Locally critical quantum phase transitions in strongly correlated metals

    Full text link
    When a metal undergoes a continuous quantum phase transition, non-Fermi liquid behaviour arises near the critical point. It is standard to assume that all low-energy degrees of freedom induced by quantum criticality are spatially extended, corresponding to long-wavelength fluctuations of the order parameter. However, this picture has been contradicted by recent experiments on a prototype system: heavy fermion metals at a zero-temperature magnetic transition. In particular, neutron scattering from CeCu6−x_{6-x}Aux_x has revealed anomalous dynamics at atomic length scales, leading to much debate as to the fate of the local moments in the quantum-critical regime. Here we report our theoretical finding of a locally critical quantum phase transition in a model of heavy fermions. The dynamics at the critical point are in agreement with experiment. We also argue that local criticality is a phenomenon of general relevance to strongly correlated metals, including doped Mott insulators.Comment: 20 pages, 3 figures; extended version, to appear in Natur

    A Tunable Two-impurity Kondo system in an atomic point contact

    Full text link
    Two magnetic atoms, one attached to the tip of a Scanning Tunneling Microscope (STM) and one adsorbed on a metal surface, each constituting a Kondo system, have been proposed as one of the simplest conceivable systems potentially exhibiting quantum critical behaviour. We have succeeded in implementing this concept experimentally for cobalt dimers clamped between an STM tip and a gold surface. Control of the tip-sample distance with sub-picometer resolution allows us to tune the interaction between the two cobalt atoms with unprecedented precision. Electronic transport measurements on this two-impurity Kondo system reveal a rich physical scenario which is governed by a crossover from local Kondo screening to non-local singlet formation due to antiferromagnetic coupling as a function of separation of the cobalt atoms.Comment: 22 pages, 5 figure

    Long Spin Diffusion Length in Few-Layer Graphene Flakes.

    Get PDF
    We report a spin valve with a few-layer graphene flake bridging highly spin-polarized La_{0.67}Sr_{0.33}MnO_{3} electrodes, whose surfaces are kept clean during lithographic definition. Sharp magnetic switching is verified using photoemission electron microscopy with x-ray magnetic circular dichroism contrast. A naturally occurring high interfacial resistance ∌12  MΩ facilitates spin injection, and a large resistive switching (0.8  MΩ at 10 K) implies a 70-130  Όm spin diffusion length that exceeds previous values obtained with sharp-switching electrodes.Leverhulme Trust (Grant ID: F/09 154/E), Schlumberger Cambridge (International Scholarship), Engineering and Physical Sciences Research Council (DTA award), Royal Society, EU Graphene Flagship (no. 604391), European Research Council (Grant Hetero2D), Engineering and Physical Sciences Research Council (Grant IDs: EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/M507799/1, EP/L016087/1), Wolfson College.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the American Physical Society

    Quantum Criticality in Heavy Fermion Metals

    Full text link
    Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, which use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including i) the extent to which the quantum criticality in heavy fermion metals goes beyond the standard theory of order-parameter fluctuations, ii) the nature of the Kondo effect in the quantum critical regime, iii) the non-Fermi liquid phenomena that accompany quantum criticality, and iv) the interplay between quantum criticality and unconventional superconductivity.Comment: (v2) 39 pages, 8 figures; shortened per the editorial mandate; to appear in Nature Physics. (v1) 43 pages, 8 figures; Non-technical review article, intended for general readers; the discussion part contains more specialized topic

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    WHIM emission and the cluster soft excess: a model comparison

    Full text link
    The confirmation of the cluster soft excess (CSE) by XMM-Newton has rekindled interest as to its origin. The recent detections of CSE emission at large cluster radii together with reports of OVII line emission associated with the CSE has led many authors to conjecture that the CSE is, in fact, a signature of the warm-hot intergalactic medium (WHIM). In this paper we test the scenario by comparing the observed properties of the CSE with predictions based on models of the WHIM. We find that emission from the WHIM in current models is 3 to 4 orders of magnitude too faint to explain the CSE. We discuss different possibilities for this discrepancy including issues of simulation resolution and scale, and the role of small density enhancements or galaxy groups. Our final conclusion is that the WHIM alone is unlikely to be able to accout for the observed flux of the CSE.Comment: ApJ in pres

    Extremely strong coupling superconductivity in artificial two-dimensional Kondo lattices

    Full text link
    When interacting electrons are confined to low-dimensions, the electron-electron correlation effect is enhanced dramatically, which often drives the system into exhibiting behaviors that are otherwise highly improbable. Superconductivity with the strongest electron correlations is achieved in heavy-fermion compounds, which contain a dense lattice of localized magnetic moments interacting with a sea of conduction electrons to form a 3D Kondo lattice. It had remained an unanswered question whether superconductivity would persist upon effectively reducing the dimensionality of these materials from three to two. Here we report on the observation of superconductivity in such an ultimately strongly-correlated system of heavy electrons confined within a 2D square-lattice of Ce-atoms (2D Kondo lattice), which was realized by fabricating epitaxial superlattices built of alternating layers of heavy-fermion CeCoIn5 and conventional metal YbCoIn5. The field-temperature phase diagram of the superlattices exhibits highly unusual behaviors, including a striking enhancement of the upper critical field relative to the transition temperature. This implies that the force holding together the superconducting electron-pairs takes on an extremely strong coupled nature as a result of two-dimensionalization.Comment: A revised version has been accepted for publication in Nature Physic

    Potential advantages of cell administration on the inflammatory response compared to standard ACE inhibitor treatment in experimental myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone Marrow (BM) progenitor cells can target the site of myocardial injury, contributing to tissue repair by neovascolarization and/or by a possible direct paracrine effect on the inflammatory cascade. Angiotensin Converting Enzyme inhibitors (ACE-I) are effective in reducing mortality and preventing left ventricular (LV) function deterioration after myocardial infarction.</p> <p>Methods</p> <p>We investigated the short term effects of BM mononuclear cells (BMMNCs) therapy on the pro-inflammatory cytokines (pro-CKs) and on LV remodelling and compared these effects over a standard ACE-I therapy in a rat model of myocardial cryodamage.</p> <p>Forty two adult inbread Fisher-F344 rats were randomized into three groups: untreated (UT; n = 12), pharmacological therapy (ACE-I; n = 14, receiving quinapril), and cellular therapy (BMMNCs; n = 16, receiving BMMNCs infusion). Rats underwent to a standard echocardiogram in the acute setting and 14 days after the damage, before the sacrifice. Pro-CKs analysis (interleukin (IL)1ÎČ, IL-6, tumor necrosis factor (TNF)α was performed (multiplex proteome arrays) on blood samples obtained by direct aorta puncture before the sacrifice; a control group of 6 rats was considered as reference.</p> <p>Results</p> <p>Concerning the extension of the infarcted area as well as the LV dimensions, no differences were observed among the animal groups; treated rats had lower left atrial diameters and higher indexes of LV function. Pro-Cks were increased in infarcted-UT rats if compared with controls, and significantly reduced by BMMNCs and ACE-I ; TNFα inversely correlated with LV fractional shortening.</p> <p>Conclusion</p> <p>After myocardial infarction, both BMMNCs and ACE-I reduce the pattern of pro-Ck response, probably contributing to prevent the deterioration of LV function observed in UT rats.</p
    • 

    corecore