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We report a spin valve with a few-layer graphene flake bridging 

highly spin-polarised La0.67Sr0.33MnO3 electrodes, whose surfaces are 

kept clean during lithographic definition. Sharp magnetic switching is 

verified using photoemission electron microscopy with X-ray 

magnetic circular dichroism contrast. A naturally occurring high 

interfacial resistance ~12 MΩ facilitates spin injection, and a large 

resistive switching (0.8 MΩ at 10 K) implies a 70-130 μm spin 

diffusion length that exceeds previous values 30 μm obtained with 

sharp-switching electrodes. This demonstration brings graphene 

spintronics one step closer to applications. 

 

Graphene is at the centre of an ever-growing research effort, due to its unique properties [1]. 

In particular, it shows great potential in spintronics [2-5]
 
because its spin diffusion length, 𝑙sf

G , 

is expected to be long compared to semiconductors and metals, as a consequence of weak 

spin-orbit coupling and weak hyperfine interaction [4,6]. Significant progress has been made 

towards the realization of spintronic devices [5], but a better understanding of spin transport 

in graphene is required in order to realize logic and memory operations in which the spin 

degree of freedom is manipulated [7,8]. Here we will show that spin-polarized electrons can 

travel further in graphene than previously thought. 
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Spin transport has been previously measured in both graphene [2,9-12], graphite 

flakes [13-16] and hBN-encapsulated graphene [17]. By fitting Hanle curves [2] that describe 

the precession of transport spins in an out-of-plane magnetic field, a wide range of 𝑙sf
G  values 

were reported in the literature at various temperatures, from 1 μm [15] up to 30 μm [17] (both 

measured at room tempertaure). The origin of the spin relaxation that limits 𝑙sf
G  is still debated, 

and may be associated with impurities [18], ripples [6], substrates [19],
 
and spin absorption in 

ferromagnetic electrodes [12,20,21]. 

 Unwanted spin absorption arises in ferromagnetic electrodes if there is a ‘conductivity 

mismatch’ with respect to a non-magnetic channel, i.e. a discrepancy in the product of 

resistivity and spin diffusion length [22,23]. This problem can be avoided by inserting an 

insulating barrier between the two materials [23], e.g. with resistances in the range of a few 

MΩ for graphene with metallic electrodes [20]. By exploiting this approach, ref. [3]
 
reported 

𝑙sf
G  ~ 150 µm in multilayer graphene, with the interfacial resistance (tens of MΩ) dominating 

the channel resistance (~1 kΩ). However, the magnetoresistance (MR) data in [3]
 
showed 

quasi-continuous switching, incompatible with the parallel/antiparallel magnetic electrode 

configurations that were assumed when analyzing these data. Therefore the reported value of 

𝑙sf
G  may include contributions unrelated to spin transport, e.g. from tunneling anisotropic 

magnetoresistance (TAMR), which arises at contacts due to non-180 magnetic switching 

[24,25]. 

 Here we report good spin transport in a mechanically exfoliated flake of five-layer 

graphene (5LG) that bridges two epitaxial electrodes of the ferromagnetic oxide 

La0.67Sr0.33MnO3 (LSMO) to form an LSMO-5LG-LSMO spin valve. At 10 K, this device can 

be switched using a magnetic field to interconvert the low state of resistance RP with the high 

state of resistance RAP = RP + ∆R, which is visible above the background noise (∆R ~ 0.8 MΩ, 

MR = ∆R/RP ~ 3.0%). By contrast, previous reports based on these materials recorded no MR 

[26], or TAMR without spin transport [25]. Allowing the interfacial spin polarization 𝛾 to 

assume a wide range of values 0.95 > 𝛾 > 0.54, cf. [27], the drift-diffusion model confirms 

long-distance spin transport at 10 K, with 70 μm < 𝑙sf
G  < 130 μm. 

The desired switching between parallel and antiparallel magnet electrode 

configurations is confirmed at 150 K, using photoemission electron microscopy (PEEM) with 

magnetic contrast from X-ray magnetic circular dichroism (XMCD) [28]. Magneto-optical 

Kerr effect (MOKE) microscopy confirms that our uniaxial in-plane magnetic easy axis does 
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not undergo any re-orientation on cooling to the transport measurement temperature of 10 K. 

Therefore our signal is due to spin transport, as intended. 

The good spin transport arises for five reasons. First, LSMO possesses a high spin 

polarization of up to 100% at 5 K [29,30] (and is therefore commonly used in spintronic 

devices [27,31]). Second, our LSMO surfaces are kept clean during electrode definition with 

a temporary layer of Au, which is completely removed by chemical etching prior to FLG 

transfer. Third, by adopting the pseudocubic (110) orientation of LSMO, we are able to 

switch between parallel/antiparallel magnetic electrode configurations at distinct and 

well-defined magnetic fields, which is non-trivial for complex oxides [32]. This sharp 

switching is essential for estimating 𝑙sf
G  without spurious effects, such as TAMR. Moreover, 

switching between single-domain states enhances spin signals [32]. Fourth, the insulating 

barriers required for good spin injection arise naturally from the structural and chemical 

discrepancy between the two materials. Fifth, flakes of few-layer graphene (FLG), whose 

physical properties represent an interpolation between two-dimensional single-layer graphene 

(SLG) and bulk graphite [33], possess larger values of 𝑙sf
G  than SLG, due to increased 

screening from impurity scattering potentials [13-15]. 

 Sample preparation is as follows. Two similar LSMO films are grown epitaxially by 

pulsed laser deposition (PLD) on un-terminated single crystals of SrTiO3 (STO) (110) (as 

described in supplementary material [34]). The film used for the device and the MOKE 

studies is 30 nm thick. The film used for PEEM is slightly thicker (65 nm). Both have 

cube-on-cube epitaxy, are fully strained, and possess atomically flat surfaces between step 

terraces (Supplementary Figs S1-2). Vibrating sample magnetometry shows in-plane uniaxial 

magnetic anisotropy [35] collinear with [001]STO. The anisotropy constant is 43 kJ m
-3

 at 

150 K, and 6.5 kJ m
-3

 at room temperature, similar to previous reports [36]. 

 Similar electrodes are defined in both films by optical lithography and Ar-ion milling. 

For the PEEM sample, we avoid arcing by replacing the over-milled LSMO with 50 nm of 

sputter-deposited Au (using the electrode-definition mask as a lift-off mask prior to 

dissolution). For the spin-valve device/MOKE sample, we (1) reduce any tendency for 5LG 

to sag by replacing the over-milled LSMO with 48 nm of amorphous NdGaO3 (NGO) 

deposited at room temperature by PLD (again, using the electrode-definition mask as a 

lift-off mask prior to dissolution); (2) ensure clean electrode surfaces by evaporating a 

10 nm-thick protective Au layer prior to lithography, removing this layer in an aqueous KI/I2 
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solution after lithography, and then wiping with cotton buds soaked in isopropanol; and (3) 

finally anneal in 55 kPa O2 at 750 ˚C to avoid substrate conductivity. 

 FLG flakes are produced by micromechanical cleavage of natural graphite. A 

combination of optical contrast [37], Raman spectroscopy [38,39] and Atomic Force 

Microscopy (AFM) are used to identify 5LG flakes. These are then transferred onto LSMO 

electrodes by a wet transfer technique [1,40] (see supplementary materials [34]). 

 Magnetic switching of LSMO electrodes is studied at ~150 K using XMCD-PEEM 

(Fig. 1). The images are obtained at magnetic remanence after applying a magnetic field 

0Hpulse along the in-plane LSMO easy axis || [001]STO (red arrow, Fig. 1). The value of 

XMCD asymmetry represents the projection of the in-plane surface magnetization along the 

direction indicated by the green arrow (in-plane projection of the grazing-incidence beam) 

[32]. Regions of in-plane electrode magnetization lying parallel (antiparallel) to this green 

arrow appear blue (red). The initial application of a negative magnetic field leads to a 

homogeneously magnetized remanent state (Fig. 1a). The application of successively larger 

positive field pulses leads to magnetization reversal in individual electrodes (Fig. 1b,c), and 

ultimately magnetization reversal in all four electrodes (Fig. 1d). The subsequent application 

of successively larger negative field pulses leads to a second magnetization reversal in each 

electrode (Fig. 1e-h). 

 The electrode switching sequence is A, B, C+D in the up-sweep (Fig. 1a-d), and A, B, 

D, C in the down-sweep (Fig. 1e-h), differing only because the field steps in our up-sweep 

are too large to distinguish switching in C and D. This switching sequence (widest, narrowest, 

narrowest, intermediate) is incompatible with the monotonic dependence of switching field 

on electrode width that might be expected due to shape anisotropy. This suggests that there is 

a competition between more (fewer) nucleation sites and lower (higher) demagnetizing field 

in wider (narrower) electrodes. The sharp switching, which we exploit in our spintronic 

device, implies that domain-wall pinning is negligible, such that magnetization reversal is 

limited by domain nucleation. 

 MOKE microscopy is used to investigate magnetic switching in the widest LSMO 

electrode (A) at the 10 K magneto-transport measurement temperature (the sensitivity of the 

MOKE setup is not sufficient to reliably measure magnetic switching in the smaller 

electrodes). The magnetic easy axis of electrode A is collinear with [001]STO (Fig. 2), and the 
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perpendicular in-plane direction is a magnetically anhysteretic hard axis. These MOKE 

observations are consistent with our 150 K imaging study of all four electrodes (Fig. 1). The 

magnitude of the electrode A switching field measured by MOKE at 10 K (|0H| ~ 8 mT, Fig. 

2) exceeds the corresponding value that may be inferred from our imaging study at 150 K 

(|0H| ~ 1.2-1.4 mT, Fig. 1), primarily because reducing temperature increases magnetic 

anisotropy, such that the nucleation field required for switching is higher [41]. 

 The 5LG flake is positioned across all four LSMO electrodes A-D, as seen by AFM 

(upper inset, Fig. 2). The observed wrinkles are absent in a phase-contrast AFM image of the 

same area (lower inset, Fig. 2), implying that the flake is clean (i.e. no residual PMMA). The 

flake lies conformally on the LSMO electrodes, with sagging reduced due to the NGO 

deposited between electrodes. 

Fig. 3 compares the 5LG Raman spectra before and after transfer, confirming 

successful transfer with no sample damage. The D peak is absent, implying a limited number 

of defects [37,39]. The Raman spectrum of STO (Fig. 3, green line) shows the expected 

peaks [42]. Since the D band of graphene and the LO4 + LO2 phonons of the STO substrate 

[42] both fall in the same range at ~1310 cm
-1

, the Raman spectrum of the STO substrate is 

subtracted point-by-point from the spectrum of 5LG on STO (Fig. 3, red line) to confirm that 

the D band remains absent after transfer (Fig. 3, black line). 

 The two-terminal resistance between adjacent electrode pairs in the device at 10 K is 

RAB ~ 10 MΩ, RBC ~ 24 MΩ and RCD ~ 150 MΩ (electrode spacings lAB ~ 3 m, lBC ~ 2 m 

and lCD ~ 1 m). Parasitic conduction through the substrate is excluded by measuring LSMO 

electrode pairs without 5LG, elsewhere on the same chip. The high values of resistance 

indicate that the LSMO-5LG interfaces function as tunnel barriers [25], consistent with 

non-linear current-voltage plots (Supplementary Fig. S3). Device resistance is dominated by 

these LSMO-5LG interfaces, whose resistance-area products vary by an order of magnitude. 

This variation implies inhomogeneous interfacial transport, possibly with local current 

densities that produce failure in a region too small or too deeply buried for AFM detection. 

 Measurements of RBC (H) at 10K are obtained during three full cycles of applied 

magnetic field prior to device failure (Fig. 4, raw data in Supplementary Fig. S4). These data 

follow from measurements of over 20 devices. The noise in this device may arise at the 

LSMO-5LG interfaces because of intermittent contact, or electrochemical reactions induced 
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by Joule heating. Magnetically induced switching due to spin-valve behaviour produces two 

symmetric high-resistance plateaux in the range 12.5 mT < |0H| < 34.5 mT (Fig. 4b). Given 

the switching sequence seen in Fig. 1 at the higher temperature of 150 K, we infer that B 

switches at the lower field (|0HB| ~ 12.5 mT), while C switches at the higher field 

(|0HC| ~ 34.5 mT), with higher switching-field values at the lower temperature due to 

enhanced uniaxial magnetic anisotropy [35,36]. 

 The two high-resistance states at 10 K differ from the low-resistance state 

RP = 24.8 MΩ by ∆R ~ 0.8 ± 0.2 MΩ (Fig. 4) (B and C subscripts are dropped for analysis). 

This yields low-field MR ~ 3.0 ± 0.2%. Given that our electrodes display sharp 180° 

magnetization reversal (Figs 1-2), we deduce that the high-resistance states arise from spin 

transport through the 5LG, rather than TAMR or other effects linked to inhomogeneous 

magnetization. This spin transport at 10 K may be interpreted using the drift-diffusion model 

[23]: 

∆𝑅 =
2(𝛽LSMO𝑅LSMO+𝛾𝑟b

∗)2

(𝑟b
∗+𝑅LSMO) cosh(

𝐿

𝑙sf
G )+

𝑅G
2

[1+(
𝑟b

∗

𝑅G
s )2] sinh(

𝐿

𝑙sf
G )

, 

where 𝑅LSMO =
1

1−𝛽LSMO
2

𝜌LSMO𝑙sf
LSMO

𝑤𝑑
 is the spin resistance of LSMO, 𝑅G

s = 𝜌s
G 𝑙sf

G

𝑤
 is the spin 

resistance of 5LG, and 𝑟b
∗ =

𝑅P

2(1−𝛾2)
 is the spin resistance of each LSMO-5LG interface 

(whose resistance RP/2 ~ 12 MΩ dominates device resistance). In the above equations, 𝛽LSMO 

is the bulk LSMO spin polarization, 𝛾 is the interfacial spin polarization, 𝑙sf
LSMO is the LSMO 

spin diffusion length, 𝜌LSMO  is the LSMO resistivity, d is the width that we assume to 

represent both LSMO electrodes separated by L, and w is the width of the 5LG flake with 

sheet resistance 𝜌s
G. 

 Allowing unknown parameters 𝑙sf
G  and 𝛾 to vary over a wide range of values, we plot 

contours of MR = ∆R/RP at 10 K (Fig. 5) using RP = 24.8 MΩ (Fig. 4b), 𝛽LSMO = 0.95 [29], a 

value of 𝑙sf
LSMO  ≈  2.6 nm [34] that is much smaller than 𝑙sf

G  and therefore not critical, 

𝜌LSMO = 10
-6 

Ω m as measured for our films, d = 6 m, w = 7 m, and 𝜌s
G ≈ 400 Ω for our 

5LG. If we assume 0.95 > 𝛾 > 0.54 from spin-polarized tunnelling studies of LSMO [30,43] 

then the contour representing MR = 3.0% is shallow, such that 𝑙sf
G  at 10 K length lies in a 
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narrow range between 70 μm (𝛾 = 0.95) and 130 μm (𝛾 = 0.54). Assuming 𝛾 = 0.8 as in [27] 

implies 𝑙sf
G  ~ 85 μm (red dot, Fig. 5). 

 At higher temperatures, our 10 K values of 70 μm  𝑙sf
G   130 μm should not fall 

significantly given that 𝑙sf
G  has been reported to show a weak temperature dependence in both 

experimental [2,9,15] and theoretical [19] studies. Therefore we may directly compare our 

low-temperature values with the smaller experimental values of 30 μm, for graphitic flakes 

[13-15] and graphene [17], measured at various temperatures including room temperature. 

Although high interfacial resistance is required to limit spin absorption [12,20,21] in our 

LSMO electrodes, our interfacial resistance is so high that MR is suppressed. This is seen for 

the afore-mentioned choice of 𝛾 = 0.8, where approximately halving interfacial resistance to 

obtain RP = 12.5 kΩ would increase MR to 170% (Fig. 5, inset). 

 Increasing MR is attractive for applications [44] because it leads to an increase of spin 

signal V  MR, i.e. the voltage difference between parallel/antiparallel configurations for bias 

voltage V. Our experimental MR = 3.0% with V = 80 mV implies V  MR = 2.4 mV, whereas 

increasing MR to 170% would increase V  MR to 136 mV, exceeding the 

LSMO-MWNT-LSMO value of 65 mV deemed suitable for applications [27]. Note that our 

entire range 70 μm  𝑙sf
G   130 μm exceeds the 50 μm deduced for MWNTs [27], possibly 

reflecting different sources of spin relaxation [45], e.g. FLG edges and MWNT curvature. 

In summary, we have reported spin transport at 10 K through a five-layer graphene 

flake that forms resistive interfaces with highly spin-polarized LSMO (110) electrodes, using  

XMCD-PEEM imaging to confirm sharp magnetic switching in the electrodes. By assuming 

0.95 > 𝛾 > 0.54, we infer values of 70 μm < 𝑙sf
G  < 130 μm that exceed all experimental values 

for graphitic flakes [13-15] and graphene [17] with sharp-switching electrodes. None of these 

experimental values should be severely compromised if measured at room temperature, as 𝑙sf
G  

has been reported to show a weak temperature dependence [2,9,15,19]. The key future 

challenge is to increase MR by reducing interfacial resistance, but annealing in forming gas 

[46] or using a current [47] would degrade the LSMO. Dry graphene transfer [48] could yield 

the desired reduction, whilst also increasing 𝑙sf
G  through increased cleanliness. 
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Figure 1. Magnetic switching in LSMO (110) electrodes A-D at 150 K. (a-h) PEEM images 

obtained at remanence after applying magnetic field 0Hpulse along the LSMO easy 

axis || [001]STO (red arrow). Field magnitudes represent upper bounds on the fields at which 

the observed switching occurred. XMCD asymmetry represents the projection of the in-plane 

surface magnetization on the in-plane projection of grazing-incidence beam direction (green 

arrow). Blue (red) depicts magnetization parallel (antiparallel) to the green arrow. Transport 

is measured between B and C using similar electrodes. 
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Figure 2. LSMO-5LG-LSMO spin-valve characterization. MOKE microscopy measurements 

of magnetic switching in LSMO (110) electrode A at 10 K. The applied magnetic field 0H 

and the measured component of magnetization M were collinear with the LSMO easy 

axis and [001]STO. Ms is saturation magnetization. AFM image (30 μm  30 μm) (upper inset) 

and phase-contrast AFM image (lower inset) show FLG flake. Device failure is not apparent 

in the images here, which are obtained after collecting the transport data of Fig. 4 using 

electrodes B and C. 
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Figure 3. Raman spectra of the graphene flake before and after transfer. G and 2D peaks are 

visible for the flake on SiO2 (blue) and after subsequent transfer to LSMO electrodes on STO 

(red). A point-by-point subtraction of the STO background (green) yields the spectrum for the 

graphene flake on STO (black), where the D peak is absent. Panel (a) shows the spectra 

between 250 cm
-1

 and 1250 cm
-1

, while panel (b) shows the spectra between 1250 cm
-1

 and
 

3500 cm
-1

. 
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Figure 4. LSMO-5LG-LSMO spin-valve magnetotransport at 10 K. Resistance RBC and 

magnetoresistance MRBC on decreasing (blue) and increasing (red) magnetic field H along the 

LSMO easy axis collinear with [001]STO. Dashed lines indicate RBC = 24.8 MΩ and 

RBC + ∆RBC = 25.6 MΩ for parallel and antiparallel electrode magnetizations, respectively. 

Transition to antiparallel configuration indicated by grey shading in 

12.5 mT < |0H| < 34.5 mT. Data obtained for five-layer flake, spanning 2 μm gap between 

electrodes B-C, after averaging three up and down sweeps (Supplementary Fig. S4). Bias 

voltage = 80 mV. B and C electrode subscripts dropped for analysis. 
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Figure 5. LSMO-5LG-LSMO spin-valve parameters at 10 K. Contours and greyscale 

showing MR(𝛾, 𝑙sf
G ) from the drift-diffusion model [23]. For MR ~ 3.0% and 0.95 > 𝛾 > 0.54 

we find 70 μm < 𝑙sf
G  < 130 μm (red contour). Red dot denotes MR(𝛾 = 0.8, 𝑙sf

G  = 85 μm) = 3.0% 

for experimental value of RP = 24.8 MΩ. Inset: MR(RP) for 𝛾 = 0.8 and 𝑙sf
G  = 85 μm.  
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Film growth. Three similar LSMO films are grown epitaxially at 775 C, in a flowing 

oxygen ambient of 15 Pa, from a stoichiometric target (Praxair) onto SrTiO3 (110) substrates 

(Crystal GmbH) by pulsed laser deposition at 1 Hz using a KrF laser (Lambda Physik 

Compex 201, 248 nm, target-sample distance 8 cm). 

For PEEM, we use a 65 nm-thick film that is grown at 0.41 ± 0.03 Å pulse
-1

 with a fluence of 

2.0 J cm
-2

. For the LSMO-FLG-LSMO device and x-ray diffraction, we use two 30 nm films 

that are grown at 0.07± 0.01 Å pulse
-1

, via a 15 mm × 4.5 mm aperture at the laser exit, with a 

fluence of 1.7 J cm
-2

, and a spot size of 3.8 mm
2
. 

After deposition, the samples are annealed in ~55 kPa O2 at 750 C for 1 hour, before cooling 

to room temperature. 
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Film topography is studied using an AFM (Digital Instruments Nanoscope III) in tapping 

mode.  Fig. S1 shows step-terraces on the surface of one of the 30 nm-thick films. 

 

Fig S1. AFM image of one of the 30 nm-thick films. 
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X-ray film diffraction is performed using a PANalytical PW3050/65 X’pert PRO 

high-resolution diffractometer. The two panels in Fig. S2(a) show that the film is fully 

strained along both in plane directions, i.e. along [001] and [110]. 

 

 

Fig S2. (a) Reciprocal space maps of a 30 nm-thick LSMO film with the in-plane projection 

of the incident X-ray beam parallel to [001] (left panel) and [110]  (right-panel). X-ray 

intensity is denoted I (current is denoted I in the main paper). (b) Schematic of film and 

substrate geometry. 
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XMCD-PEEM imaging of LSMO electrodes at ~150 K is performed at the Diamond Light Source 

beamline I06 with the X-ray beam at a grazing incidence angle of 16, using an Elmitec SPELEEM-III 

microscope to image the local zero-field magnetization to a probe depth of ~7 nm and a typical 

lateral resolution of ~50 nm. After imaging with right (+) and left (-) circularly polarized light, we 

calculate X-ray absorption spectroscopy (XAS)    II  and XMCD asymmetry      IIII  

for each pixel, where the influence of inhomogeneous illumination is avoided by evaluating 

    offoffon IIII , which is the relative intensity of secondary-electron emission arising from X-

ray absorption on (


onI  at 639.5 eV) and off (


offI  at 630 eV) the Mn L3 edge. Images for each x-ray 

energy and beam polarization are acquired during 10 s exposure times. Pulses of magnetic field are 

applied along the in-plane easy axis, between measurements at magnetic remanence, via a coil on 

the sample cartridge. 

 

MOKE microscopy of LSMO electrodes is performed at 10 K using an imaging system 

from Evico Magnetics with a continuous-flow He cryostat (Janis ST-500). The measurements 

are conducted in longitudinal Kerr geometry (in-plane magnetic field parallel to the plane of 

incident light). Magnetic hysteresis curves of electrode A are obtained by using the 

microscope software to restrict data collection to the area of the electrode. Linear Faraday 

contributions from the cryostat cover glass and the microscope objectives are removed after 

data collection.  
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Graphene production and transfer. FLG is produced by micromechanical cleavage of natural 

graphite (NGS Naturgraphit) onto oxidized silicon wafers with oxide thickness of 285 nm and 

characterized by a combination of optical contrast [S1] and Raman spectroscopy [S2,S3]. Selected 

crystals are removed from the Si/SiO2 substrate and deterministically placed onto LSMO electrodes 

by a wet transfer technique based on a polymethil methacrylate (PMMA) sacrificial layer. The 

polymer is spin coated onto the Si/SiO2 substrate, then immersed in de-ionized (DI) water at 90 °C 

[S4]. The water intercalates at the SiO2/PMMA interface and detaches the PMMA. Graphene flakes 

remain attached to the bottom of the PMMA layer and this is placed on the magnetic LSMO 

electrodes. In order to reduce the presence of water at the LSMO-graphene interface, the 

PMMA+graphene film is moved to a water-ethanol solution (1:4 ratio in volume) prior to placing on 

LSMO electrodes. Alignment is achieved by moving the PMMA+graphene film on the target 

substrate before evaporation of the ethanol-water solution. Success of the transfer is confirmed by 

optical microscopy, atomic force microscopy (AFM) and Raman spectroscopy. 

 

Raman spectroscopy 

Raman measurements are performed using a Renishaw InVia micro-spectrometer equipped with a 

100 objective (numerical aperture, N.A. = 0.85), a laser excitation wavelength of 514.5 nm, with 

laser spot size ~1 um and power <1 mW to avoid heating. 
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Magnetotransport measurements are performed using a Janis Research Supertran-VP cryostat with 

a continuous flow of liquid He. Bias voltage V is applied via mini-coax cables, and current I is 

measured using a Keithley 6487 picoammeter (Fig. S3). Fig. 4 was constructed using the raw data 

shown in Fig. S4, where at each measurement field the differential resistance 𝑅 = 𝑉 𝐼⁄  was 

calculated for changes of V between 50 and 80 mV. 

 

Fig. S3. I-V characteristics for electrodes (a) A-B and (b) C-D at 10 K. 

 

Fig. S4. (a) First, (b) second, (c) third field sweep used to construct Fig. 4 in the main paper, 

reproduced here in (d). Each down sweep precedes the subsequent up sweep. Grey shading in 

12.5 mT < |0H| < 34.5 mT indicates transition to antiparallel electrode configuration. 



23 
 

Spin diffusion length in LSMO  

The spin diffusion length  𝑙sf
LSMO = √𝐷LSMO𝜏sf

LSMO, where the spin relaxation time 

𝜏sf
LSMO = 20 ps [S5] and spin diffusivity 𝐷LSMO = 𝜇LSMO𝑘B𝑇 depends on mobility 

 𝜇LSMO = 𝜎LSMO𝑅H
LSMO.  For LSMO, conductivity 𝜎LSMO  ≈  106 Ω−1m−1 [S6], Hall 

coefficient 𝑅H
LSMO = 0.410

-3
 cm

3
 C

-1
 [S7] and 𝑘B = 8.6173324  10

-5
 eV K

-1
, such that 

mobility 𝜇LSMO = 0.4 × 10−3 m
2
 

-1
 C

-1
, and therefore 𝑙sf

LSMO ≈ 2.6 nm at T = 10 K. 
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