44 research outputs found

    Targeting GATA4 for cardiac repair

    Get PDF
    Various strategies have been applied to replace the loss of cardiomyocytes in order to restore reduced cardiac function and prevent the progression of heart disease. Intensive research efforts in the field of cellular reprogramming and cell transplantation may eventually lead to efficient in vivo applications for the treatment of cardiac injuries, representing a novel treatment strategy for regenerative medicine. Modulation of cardiac transcription factor (TF) networks by chemical entities represents another viable option for therapeutic interventions. Comprehensive screening projects have revealed a number of molecular entities acting on molecular pathways highly critical for cellular lineage commitment and differentiation, including compounds targeting Wnt- and transforming growth factor beta (TGF beta)-signaling. Furthermore, previous studies have demonstrated that GATA4 and NKX2-5 are essential TFs in gene regulation of cardiac development and hypertrophy. For example, both of these TFs are required to fully activate mechanical stretch-responsive genes such as atrial natriuretic peptide and brain natriuretic peptide (BNP). We have previously reported that the compound 3i-1000 efficiently inhibited the synergy of the GATA4-NKX2-5 interaction. Cellular effects of 3i-1000 have been further characterized in a number of confirmatory in vitro bioassays, including rat cardiac myocytes and animal models of ischemic injury and angiotensin II-induced pressure overload, suggesting the potential for small molecule-induced cardioprotection.Peer reviewe

    Investigation of Association between PFO Complicated by Cryptogenic Stroke and a Common Variant of the Cardiac Transcription Factor GATA4

    Get PDF
    Patent foramen ovale (PFO) is associated with clinical conditions including cryptogenic stroke, migraine and varicose veins. Data from studies in humans and mouse suggest that PFO and the secundum form of atrial septal defect (ASDII) exist in an anatomical continuum of septal dysmorphogenesis with a common genetic basis. Mutations in multiple members of the evolutionarily conserved cardiac transcription factor network, including GATA4, cause or predispose to ASDII and PFO. Here, we assessed whether the most prevalent variant of the GATA4 gene, S377G, was significantly associated with PFO or ASD. Our analysis of world indigenous populations showed that GATA4 S377G was largely Caucasian-specific, and so subjects were restricted to those of Caucasian descent. To select for patients with larger PFO, we limited our analysis to those with cryptogenic stroke in which PFO was a subsequent finding. In an initial study of Australian subjects, we observed a weak association between GATA4 S377G and PFO/Stroke relative to Caucasian controls in whom ASD and PFO had been excluded (OR = 2.16; p = 0.02). However, in a follow up study of German Caucasians no association was found with either PFO or ASD. Analysis of combined Australian and German data confirmed the lack of a significant association. Thus, the common GATA4 variant S377G is likely to be relatively benign in terms of its participation in CHD and PFO/Stroke

    The endogenous retrovirus ENS-1 provides active binding sites for transcription factors in embryonic stem cells that specify extra embryonic tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long terminal repeats (LTR) from endogenous retroviruses (ERV) are source of binding sites for transcription factors which affect the host regulatory networks in different cell types, including pluripotent cells. The embryonic epiblast is made of pluripotent cells that are subjected to opposite transcriptional regulatory networks to give rise to distinct embryonic and extraembryonic lineages. To assess the transcriptional contribution of ERV to early developmental processes, we have characterized <it>in vitro </it>and <it>in vivo </it>the regulation of ENS-1, a host adopted and developmentally regulated ERV that is expressed in chick embryonic stem cells.</p> <p>Results</p> <p>We show that <it>Ens-1 </it>LTR activity is controlled by two transcriptional pathways that drive pluripotent cells to alternative developmental fates. Indeed, both Nanog that maintains pluripotency and Gata4 that induces differentiation toward extraembryonic endoderm independently activate the LTR. Ets coactivators are required to support Gata factors' activity thus preventing inappropriate activation before epigenetic silencing occurs during differentiation. Consistent with their expression patterns during chick embryonic development, Gata4, Nanog and Ets1 are recruited on the LTR in embryonic stem cells; in the epiblast the complementary expression of Nanog and Gata/Ets correlates with the <it>Ens-1 </it>gene expression pattern; and Ens-1 transcripts are also detected in the hypoblast, an extraembryonic tissue expressing Gata4 and Ets2, but not Nanog. Accordingly, over expression of Gata4 in embryos induces an ectopic expression of <it>Ens-1</it>.</p> <p>Conclusion</p> <p>Our results show that <it>Ens-1 </it>LTR have co-opted conditions required for the emergence of extraembryonic tissues from pluripotent epiblasts cells. By providing pluripotent cells with intact binding sites for Gata, Nanog, or both, <it>Ens-1 </it>LTR may promote distinct transcriptional networks in embryonic stem cells subpopulations and prime the separation between embryonic and extraembryonic fates.</p

    Development and evolution of the metazoan heart

    No full text
    The mechanisms of the evolution and development of the heart in metazoans are highlighted, starting with the evolutionary origin of the contractile cell, supposedly the precursor of cardiomyocytes. The last eukaryotic common ancestor is likely a combination of several cellular organisms containing their specific metabolic pathways and genetic signaling networks. During evolution, these tool kits diversified. Shared parts of these conserved tool kits act in the development and functioning of pumping hearts and open or closed circulations in such diverse species as arthropods, mollusks, and chordates. The genetic tool kits became more complex by gene duplications, addition of epigenetic modifications, influence of environmental factors, incorporation of viral genomes, cardiac changes necessitated by air-breathing, and many others. We evaluate mechanisms involved in mollusks in the formation of three separate hearts and in arthropods in the formation of a tubular heart. A tubular heart is also present in embryonic stages of chordates, providing the septated four-chambered heart, in birds and mammals passing through stages with first and second heart fields. The four-chambered heart permits the formation of high-pressure systemic and low-pressure pulmonary circulation in birds and mammals, allowing for high metabolic rates and maintenance of body temperature. Crocodiles also have a (nearly) separated circulation, but their resting temperature conforms with the environment. We argue that endothermic ancestors lost the capacity to elevate their body temperature during evolution, resulting in ectothermic modern crocodilians. Finally, a clinically relevant paragraph reviews the occurrence of congenital cardiac malformations in humans as derailments of signaling pathways during embryonic development.Cardiolog
    corecore