32 research outputs found

    Expression profiling during arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid

    Get PDF
    Plants have evolved strong innate immunity mechanisms, but successful pathogens evade or suppress plant immunity via effectors delivered into the plant cell. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis thaliana, and a genome sequence is available for isolate Emoy2. Here, we exploit the availability of genome sequences for Hpa and Arabidopsis to measure gene-expression changes in both Hpa and Arabidopsis simultaneously during infection. Using a high-throughput cDNA tag sequencing method, we reveal expression patterns of Hpa predicted effectors and Arabidopsis genes in compatible and incompatible interactions, and promoter elements associated with Hpa genes expressed during infection. By resequencing Hpa isolate Waco9, we found it evades Arabidopsis resistance gene RPP1 through deletion of the cognate recognized effector ATR1. Arabidopsis salicylic acid (SA)-responsive genes including PR1 were activated not only at early time points in the incompatible interaction but also at late time points in the compatible interaction. By histochemical analysis, we found that Hpa suppresses SA-inducible PR1 expression, specifically in the haustoriated cells into which host-translocated effectors are delivered, but not in non-haustoriated adjacent cells. Finally, we found a highly-expressed Hpa effector candidate that suppresses responsiveness to SA. As this approach can be easily applied to host-pathogen interactions for which both host and pathogen genome sequences are available, this work opens the door towards transcriptome studies in infection biology that should help unravel pathogen infection strategies and the mechanisms by which host defense responses are overcome

    Effects of DNA supercoiling on chromatin architecture

    Get PDF
    Disruptions in chromatin structure are necessary for the regulation of eukaryotic genomes, from remodelling of nucleosomes at the base pair level through to large-scale chromatin domains that are hundreds of kilobases in size. RNA polymerase is a powerful motor which, prevented from turning with the tight helical pitch of the DNA, generates over-wound DNA ahead of itself and under-wound DNA behind. Mounting evidence supports a central role for transcription-dependent DNA supercoiling in disrupting chromatin structure at all scales. This supercoiling changes the properties of the DNA helix in a manner that substantially alters the binding specificity of DNA binding proteins and complexes, including nucleosomes, polymerases, topoisomerases and transcription factors. For example, transient over-wound DNA destabilises nucleosome core particles ahead of a transcribing polymerase, whereas under-wound DNA facilitates pre-initiation complex formation, transcription factor binding and nucleosome core particle association behind the transcribing polymerase. Importantly, DNA supercoiling can also dissipate through DNA, even in a chromatinised context, to influence both local elements and large chromatin domains. We propose a model in which changes in unconstrained DNA supercoiling influences higher levels of chromatin organisation through the additive effects of DNA supercoiling on both DNA-protein and DNA-nucleosome interactions. This model links small-scale changes in DNA and chromatin to the higher-order fibre and large-scale chromatin structures, providing a mechanism relating gene regulation to chromatin architecture in vivo

    The site occupancy of Mg in the brownmillerite structure and its effect on hydration properties: an X-ray/neutron diffraction and EXAFS study

    No full text
    Samples of pure (Ca2FeAlO5) and lightly doped (Ca2Fe0.95Al0.95Mg0.05Si0.05O5) brownmillerite have been synthesized. Synchrotron X-ray and neutron diffraction data have been collected so that the structures can be refined using, simultaneously, both diffraction data sets and known compositional information; this overcomes the problem of under-determinacy resulting from multi-occupation of the tetrahedrally and octahedrally coordinated sites in the structure. For the pure form, a 2.7:1 iron/aluminium preference for octahedral/tetrahedral (respectively) occupation is obtained. This trend is reflected also in the doped brownmillerite, though, because of the low level of Mg doping, the occupancy of Mg is only resolved through the additional use of Mg EXAFS (extended X-ray absorption fine structure) data, which shows that Mg displays a distinct octahedral site preference rather than a disordered occupation between the octahedral/tetrahedral sites. The consequences of Mg doping are then examined using time-resolved multi-angle energy-dispersive powder X-ray diffraction studies of the mineral undergoing hydration; this shows that the pure form is more active than the doped form
    corecore