9 research outputs found

    An International Comparison of Presentation, Outcomes and CORONET Predictive Score Performance in Patients with Cancer Presenting with COVID-19 across Different Pandemic Waves.

    Get PDF
    Patients with cancer have been shown to have increased risk of COVID-19 severity. We previously built and validated the COVID-19 Risk in Oncology Evaluation Tool (CORONET) to predict the likely severity of COVID-19 in patients with active cancer who present to hospital. We assessed the differences in presentation and outcomes of patients with cancer and COVID-19, depending on the wave of the pandemic. We examined differences in features at presentation and outcomes in patients worldwide, depending on the waves of the pandemic: wave 1 D614G (n = 1430), wave 2 Alpha (n = 475), and wave 4 Omicron variant (n = 63, UK and Spain only). The performance of CORONET was evaluated on 258, 48, and 54 patients for each wave, respectively. We found that mortality rates were reduced in subsequent waves. The majority of patients were vaccinated in wave 4, and 94% were treated with steroids if they required oxygen. The stages of cancer and the median ages of patients significantly differed, but features associated with worse COVID-19 outcomes remained predictive and did not differ between waves. The CORONET tool performed well in all waves, with scores in an area under the curve (AUC) of >0.72. We concluded that patients with cancer who present to hospital with COVID-19 have similar features of severity, which remain discriminatory despite differences in variants and vaccination status. Survival improved following the first wave of the pandemic, which may be associated with vaccination and the increased steroid use in those patients requiring oxygen. The CORONET model demonstrated good performance, independent of the SARS-CoV-2 variants

    Anxiety and Depression in Adults with Autism Spectrum Disorder: A Systematic Review and Meta-analysis

    Get PDF
    Adults with autism spectrum disorder (ASD) are thought to be at disproportionate risk of developing mental health comorbidities, with anxiety and depression being considered most prominent amongst these. Yet, no systematic review has been carried out to date to examine rates of both anxiety and depression focusing specifically on adults with ASD. This systematic review and meta-analysis examined the rates of anxiety and depression in adults with ASD and the impact of factors such as assessment methods and presence of comorbid intellectual disability (ID) diagnosis on estimated prevalence rates. Electronic database searches for studies published between January 2000 and September 2017 identified a total of 35 studies, including 30 studies measuring anxiety (n = 26 070; mean age = 30.9, s.d. = 6.2 years) and 29 studies measuring depression (n = 26 117; mean age = 31.1, s.d. = 6.8 years). The pooled estimation of current and lifetime prevalence for adults with ASD were 27% and 42% for any anxiety disorder, and 23% and 37% for depressive disorder. Further analyses revealed that the use of questionnaire measures and the presence of ID may significantly influence estimates of prevalence. The current literature suffers from a high degree of heterogeneity in study method and an overreliance on clinical samples. These results highlight the importance of community-based studies and the identification and inclusion of well-characterized samples to reduce heterogeneity and bias in estimates of prevalence for comorbidity in adults with ASD and other populations with complex psychiatric presentations

    Establishment of CORONET; COVID-19 Risk in Oncology Evaluation Tool to identify cancer patients at low versus high risk of severe complications of COVID-19 infection upon presentation to hospital

    No full text
    AbstractBackgroundCancer patients are at increased risk of severe COVID-19. As COVID-19 presentation and outcomes are heterogeneous in cancer patients, decision-making tools for hospital admission, severity prediction and increased monitoring for early intervention are critical.ObjectiveTo identify features of COVID-19 in cancer patients predicting severe disease and build a decision-support online tool; COVID-19 Risk in Oncology Evaluation Tool (CORONET)MethodData was obtained for consecutive patients with active cancer with laboratory confirmed COVID-19 presenting in 12 hospitals throughout the United Kingdom (UK). Univariable logistic regression was performed on pre-specified features to assess their association with admission (≥24 hours inpatient), oxygen requirement and death. Multivariable logistic regression and random forest models (RFM) were compared with patients randomly split into training and validation sets. Cost function determined cut-offs were defined for admission/death using RFM. Performance was assessed by sensitivity, specificity and Brier scores (BS). The CORONET model was then assessed in the entire cohort to build the online CORONET tool.ResultsTraining and validation sets comprised 234 and 66 patients respectively with median age 69 (range 19-93), 54% males, 46% females, 71% vs 29% had solid and haematological cancers. The RFM, selected for further development, demonstrated superior performance over logistic regression with AUROC predicting admission (0.85 vs. 0.78) and death (0.76 vs. 0.72). C-reactive protein was the most important feature predicting COVID-19 severity. CORONET cut-offs for admission and mortality of 1.05 and 1.8 were established. In the training set, admission prediction sensitivity and specificity were 94.5% and 44.3% with BS 0.118; mortality sensitivity and specificity were 78.5% and 57.2% with BS 0.364. In the validation set, admission sensitivity and specificity were 90.7% and 42.9% with BS 0.148; mortality sensitivity and specificity were 92.3% and 45.8% with BS 0.442. In the entire cohort, the CORONET decision support tool recommended admission of 99% of patients requiring oxygen and of 99% of patients who died.Conclusions and RelevanceCORONET, a decision support tool validated in hospitals throughout the UK showed promise in aiding decisions regarding admission and predicting COVID-19 severity in patients with cancer presenting to hospital. Future work will validate and refine the tool in further datasets.</jats:sec

    Establishment of CORONET, COVID-19 Risk in Oncology Evaluation Tool, to Identify Patients With Cancer at Low Versus High Risk of Severe Complications of COVID-19 Disease On Presentation to Hospital.

    No full text
    PURPOSE: Patients with cancer are at increased risk of severe COVID-19 disease, but have heterogeneous presentations and outcomes. Decision-making tools for hospital admission, severity prediction, and increased monitoring for early intervention are critical. We sought to identify features of COVID-19 disease in patients with cancer predicting severe disease and build a decision support online tool, COVID-19 Risk in Oncology Evaluation Tool (CORONET). METHODS: Patients with active cancer (stage I-IV) and laboratory-confirmed COVID-19 disease presenting to hospitals worldwide were included. Discharge (within 24 hours), admission (≥ 24 hours inpatient), oxygen (O2) requirement, and death were combined in a 0-3 point severity scale. Association of features with outcomes were investigated using Lasso regression and Random Forest combined with Shapley Additive Explanations. The CORONET model was then examined in the entire cohort to build an online CORONET decision support tool. Admission and severe disease thresholds were established through pragmatically defined cost functions. Finally, the CORONET model was validated on an external cohort. RESULTS: The model development data set comprised 920 patients, with median age 70 (range 5-99) years, 56% males, 44% females, and 81% solid versus 19% hematologic cancers. In derivation, Random Forest demonstrated superior performance over Lasso with lower mean squared error (0.801 v 0.807) and was selected for development. During validation (n = 282 patients), the performance of CORONET varied depending on the country cohort. CORONET cutoffs for admission and mortality of 1.0 and 2.3 were established. The CORONET decision support tool recommended admission for 95% of patients eventually requiring oxygen and 97% of those who died (94% and 98% in validation, respectively). The specificity for mortality prediction was 92% and 83% in derivation and validation, respectively. Shapley Additive Explanations revealed that National Early Warning Score 2, C-reactive protein, and albumin were the most important features contributing to COVID-19 severity prediction in patients with cancer at time of hospital presentation. CONCLUSION: CORONET, a decision support tool validated in health care systems worldwide, can aid admission decisions and predict COVID-19 severity in patients with cancer

    Establishment of CORONET: COVID-19 Risk in Oncology Evaluation Tool to Identify Cancer Patients at Low Versus High Risk of Severe Complications of COVID-19 Infection Upon Presentation to Hospital

    No full text
    Background: Patients with cancer are at increased risk of severe COVID-19, but have heterogeneous presentations and outcomes. Decision-making tools for hospital admission, severity prediction and increased monitoring for early intervention are critical. We sought to identify features of COVID-19 in cancer patients predicting severe disease and build a decision-support online tool; COVID-19 Risk in Oncology Evaluation Tool (CORONET).Methods: Patients with active cancer (stage I-IV) and laboratory confirmed COVID-19 presenting to hospitals worldwide were included. Discharge (within 24hrs), admission (≥24hrs inpatient), oxygen requirement (O2) and death were combined in a 0-3 point severity scale. Association of features with outcome were investigated using Lasso regression and Random Forest (RF) combined with SHapley Additive exPlanations (SHAP). RF was further validated in 4 cohorts, split by geography. The CORONET model was then examined in the entire cohort to build an online CORONET decision-support tool. Admission and severe disease thresholds were established through pragmatically defined cost functions.Findings: The dataset comprised 920 patients; median age 70 (range 5-99), 56% males, 44% females, 81% solid vs. 19% haematological cancers. In derivation, RF demonstrated superior performance over Lasso with lower mean squared error (0.801 vs. 0.807) and was selected for development. During validation, RF achieved mean AUROC 0.77, 0.80 and 0.75 for prediction of admission, O 2 and death, respectively. Using the entire cohort, CORONET cut-offs for admission and mortality of 1.0 and 2.3 were established. The CORONET decision support tool recommended admission for 95% of patients eventually requiring oxygen and 97% of those who died. SHAP explanations revealed National-Early-Warning-Score-2, C-reactive protein and albumin were the most important features contributing to COVID-19 severity prediction in patients with cancer at time of hospital presentation.Interpretation: CORONET, a decision-support tool validated in healthcare systems worldwide can aid admission decisions and predict COVID-19 severity in patients with cancer.Funding Information: R. Lee and T. Robinson and J. Weaver are supported by the National Institute for Health Research as Clinical Lecturers. T. Bhogal is supported by the National Institute for Health Research as an academic clinical fellow. U. Khan is an MRC Clinical Training Fellow based at the University of Liverpool supported by the North West England Medical Research Council Fellowship Scheme in Clinical Pharmacology and Therapeutics, which is funded by the Medical Research Council (Award Ref. MR/N025989/1). The Liverpool Experimental Cancer Medicine Centre for providing infrastructure support (Grant Reference: C18616/A25153) and The Clatterbridge Cancer charity (North West Cancer Research). C. Dive is funded by CRUK Core funding to Manchester Institute (C5757/A27412) and is supported by the CRUK Manchester Centre Award (C5759/A25254), and by the NIHR Manchester Biomedical Research Centre. C. Zhou is funded by the CRUK Manchester Centre Award (C5759/A25254), J. Stevenson and P. Fitzpatrick are funded by the CRUK Accelerator Award (29374). This research was funded in part, by the Wellcome Trust [205228/Z/16/Z]. LT is also supported by the National Institute for Health Research Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections (NIHR200907) at University of Liverpool in partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford. LT is based at University of Liverpool. MS is supported by a grant from the Ministry of Science and Higher Education of the Russian Federation for the state support for the creation and development of World Class Research Centers "Digital biodesign and personalized healthcare” N.075-15-2020-926.Declaration of Interests: R Lee research funding (institution) BMS and speaker fees Astrazeneca. A. Croitoru Consulting or Advisory Role: Lilly, Merck, Roche, Bayer, Novartis, Ipsen, Research Funding me and my hospital: Gilead Sciences, Pfizer, Canfite, NanoCarrier, Bristol-Myers Squibb, Merck, Amgen, Servier, Five Prime Therapeutics, Travel Accommodations: Pfizer, Genekor, and oz, Merck, Pfizer, Servier, Roche. O. Michielin reports personal fees from Bristol-Myers Squibb, personal fees from MSD, personal fees from Novartis, personal fees from Roche, personal fees from Amgen, personal fees from NeraCare GmbH, outside the submitted work. E. Romano institutional research grants from Amgen, Astra Zeneca, Bristol-Myers Squibb. G. Pentheroudakis advisory board for Amgen, Astra Zeneca, Bristol-Myers Squibb, Lilly, Merck, MSD, Roche, Abbvie, institutional research grants from Amgen, Astra Zeneca, Boehringer Ingelheim, Bristol Myers Squibb, Debbio, Enorasis, Genekor, Ipsen, Janssen, Lilly, Merck, MSD, Pfizer, Roche, Sanofi, Servier. Solange Peters reports consultation/advisory role: AbbVie, Amgen, AstraZeneca, Bayer, Beigene, Biocartis, Bio Invent, Blueprint Medicines, Boehringer Ingelheim, Bristol-Myers Squibb, Clovis, Daiichi Sankyo, Debiopharm, Eli Lilly, Elsevier, F. Hoffmann-La Roche/Genentech, Foundation Medicine, Illumina, Incyte, IQVIA, Janssen, Medscape, Merck Sharp and Dohme, Merck Serono, Merrimack, Mirati, Novartis, Pharma Mar, Phosplatin Therapeutics, Pfizer, Regeneron, Sanofi, Seattle Genetics, Takeda, Vaccibody, talk in a company’s organized public event: AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, e-cancer, Eli Lilly, F. Hoffmann-La Roche/Genentech, Illumina, Medscape, Merck Sharp and Dohme, Novartis, PER, Pfizer, Prime, RTP, Sanofi, Takeda, receipt of grants/research supports: (Sub)investigator in trials (institutional financial support for clinical trials) sponsored by Amgen, AstraZeneca, Biodesix, Boehringer Ingelheim, Bristol-Myers Squibb, Clovis, F. Hoffmann-La Roche/Genentech, GSK, Illumina, Lilly, Merck Sharp and Dohme, Merck Serono, Mirati, Novartis, and Pfizer, Phosplatin Therapeutics. M Rowe honoraria from Astellas Pharma, speaker fees MSD and Servier. C. Wilson consultancy and speaker fees Pfizer, Amgen, Novartis, A Armstrong conference fee Merck, spouse shares in Astrazeneca. T Robinson financial support to attend educational workshops from Amgen and Daiichi-Sankyo. C Dive, outside of this scope of work, has received research funding from AstraZeneca, Astex Pharmaceuticals, Bioven, Amgen, Carrick Therapeutics, Merck AG, Taiho Oncology, Clearbridge Biomedics, Angle PLC, Menarini Diagnostics, GSK, Bayer, Boehringer Ingelheim, Roche, BMS, Novartis, Celgene, Thermofisher. C Dive is on advisory boards for, and has received consultancy fees/honoraria from, AstraZeneca, Biocartis and Merck KGaA.No other authors have nothing to declare. Ethics Approval Statement: Approval (reference 20/WA/0269) was granted from the UK Research Ethics Committee for the study. Information regarding governance/regulatory approvals for each international cohort are available in the Supp. Methods
    corecore