5,864 research outputs found

    Phonon renormalisation in doped bilayer graphene

    Get PDF
    We report phonon renormalisation in bilayer graphene as a function of doping. The Raman G peak stiffens and sharpens for both electron and hole doping, as a result of the non-adiabatic Kohn anomaly at the Γ\Gamma point. The bilayer has two conduction and valence subbands, with splitting dependent on the interlayer coupling. This results in a change of slope in the variation of G peak position with doping, which allows a direct measurement of the interlayer coupling strength.Comment: 5 figure

    How managers can build trust in strategic alliances: a meta-analysis on the central trust-building mechanisms

    Get PDF
    Trust is an important driver of superior alliance performance. Alliance managers are influential in this regard because trust requires active involvement, commitment and the dedicated support of the key actors involved in the strategic alliance. Despite the importance of trust for explaining alliance performance, little effort has been made to systematically investigate the mechanisms that managers can use to purposefully create trust in strategic alliances. We use Parkhe’s (1998b) theoretical framework to derive nine hypotheses that distinguish between process-based, characteristic-based and institutional-based trust-building mechanisms. Our meta-analysis of 64 empirical studies shows that trust is strongly related to alliance performance. Process-based mechanisms are more important for building trust than characteristic- and institutional-based mechanisms. The effects of prior ties and asset specificity are not as strong as expected and the impact of safeguards on trust is not well understood. Overall, theoretical trust research has outpaced empirical research by far and promising opportunities for future empirical research exist

    How to realize a robust practical Majorana chain in a quantum dot-superconductor linear array

    Full text link
    Semiconducting nanowires in proximity to superconductors are promising experimental systems for Majorana fermions, which may ultimately be used as building blocks for topological quantum computers. A serious challenge in the experimental realization of the Majorana fermions is the supression of topological superconductivity by disorder. We show that Majorana fermions protected by a robust topological gap can occur at the ends of a chain of quantum dots connected by s-wave superconductors. In the appropriate parameter regime, we establish that the quantum dot/superconductor system is equivalent to a 1D Kitaev chain, which can be tuned to be in a robust topological phase with Majorana end modes even in the case where the quantum dots and superconductors are both strongly disordered. Such a spin-orbit coupled quantum dot - s-wave superconductor array provides an ideal experimental platform for the observation of non-Abelian Majorana modes.Comment: 8 pages; 3 figures; version 2: Supplementary material updated to include more general proof for localized Majorana fermion

    d=3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories

    Full text link
    We study three dimensional O(N)_k and U(N)_k Chern-Simons theories coupled to a scalar field in the fundamental representation, in the large N limit. For infinite k this is just the singlet sector of the O(N) (U(N)) vector model, which is conjectured to be dual to Vasiliev's higher spin gravity theory on AdS_4. For large k and N we obtain a parity-breaking deformation of this theory, controlled by the 't Hooft coupling lambda = 4 \pi N / k. For infinite N we argue (and show explicitly at two-loop order) that the theories with finite lambda are conformally invariant, and also have an exactly marginal (\phi^2)^3 deformation. For large but finite N and small 't Hooft coupling lambda, we show that there is still a line of fixed points parameterized by the 't Hooft coupling lambda. We show that, at infinite N, the interacting non-parity-invariant theory with finite lambda has the same spectrum of primary operators as the free theory, consisting of an infinite tower of conserved higher-spin currents and a scalar operator with scaling dimension \Delta=1; however, the correlation functions of these operators do depend on lambda. Our results suggest that there should exist a family of higher spin gravity theories, parameterized by lambda, and continuously connected to Vasiliev's theory. For finite N the higher spin currents are not conserved.Comment: 34 pages, 29 figures. v2: added reference

    30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes

    Full text link
    We report that 30-inch scale multiple roll-to-roll transfer and wet chemical doping considerably enhance the electrical properties of the graphene films grown on roll-type Cu substrates by chemical vapor deposition. The resulting graphene films shows a sheet resistance as low as ~30 Ohm/sq at ~90 % transparency which is superior to commercial transparent electrodes such as indium tin oxides (ITO). The monolayer of graphene shows sheet resistances as low as ~125 Ohm/sq with 97.4% optical transmittance and half-integer quantum Hall effect, indicating the high-quality of these graphene films. As a practical application, we also fabricated a touch screen panel device based on the graphene transparent electrodes, showing extraordinary mechanical and electrical performances

    Exploring T and S parameters in Vector Meson Dominance Models of Strong Electroweak Symmetry Breaking

    Get PDF
    We revisit the electroweak precision tests for Higgsless models of strong EWSB. We use the Vector Meson Dominance approach and express S and T via couplings characterizing vector and axial spin-1 resonances of the strong sector. These couplings are constrained by the elastic unitarity and by requiring a good UV behavior of various formfactors. We pay particular attention to the one-loop contribution of resonances to T (beyond the chiral log), and to how it can improve the fit. We also make contact with the recent studies of Conformal Technicolor. We explain why the second Weinberg sum rule never converges in these models, and formulate a condition necessary for preserving the custodial symmetry in the IR.Comment: 35 pages, 7 figures; v3: refs added, to appear in JHE

    Higgs production in CP-violating supersymmetric cascade decays: probing the `open hole' at the Large Hadron Collider

    Full text link
    A benchmark CP-violating supersymmetric scenario (known as 'CPX-scenario' in the literature) is studied in the context of the Large Hadron Collider (LHC). It is shown that the LHC, with low to moderate accumulated luminosity, will be able to probe the existing `hole' in the mh1m_{h_1}-tanβ\tan\beta plane, which cannot be ruled out by the LEP data. We explore the parameter space with cascade decay of third generation squarks and gluino with CP-violating decay branching fractions. We propose a multi-channel analysis to probe this parameter space some of which are background free at an integrated luminosity of 5-10 fb1^{-1}. Specially, multi-lepton final states (3\l,\, 4\l and like sign di-lepton) are almost background free and have 5σ5\sigma reach for the corresponding signals with very early data of LHC for both 14 TeV and 7 TeV center of mass energy.Comment: 24 pages, 9 figures, references added as in the journal versio

    Light States in Chern-Simons Theory Coupled to Fundamental Matter

    Full text link
    Motivated by developments in vectorlike holography, we study SU(N) Chern-Simons theory coupled to matter fields in the fundamental representation on various spatial manifolds. On the spatial torus T^2, we find light states at small `t Hooft coupling \lambda=N/k, where k is the Chern-Simons level, taken to be large. In the free scalar theory the gaps are of order \sqrt {\lambda}/N and in the critical scalar theory and the free fermion theory they are of order \lambda/N. The entropy of these states grows like N Log(k). We briefly consider spatial surfaces of higher genus. Based on results from pure Chern-Simons theory, it appears that there are light states with entropy that grows even faster, like N^2 Log(k). This is consistent with the log of the partition function on the three sphere S^3, which also behaves like N^2 Log(k). These light states require bulk dynamics beyond standard Vasiliev higher spin gravity to explain them.Comment: 58 pages, LaTeX, no figures, Minor error corrected, references added, The main results of the paper have not change

    A self-organized model for cell-differentiation based on variations of molecular decay rates

    Get PDF
    Systemic properties of living cells are the result of molecular dynamics governed by so-called genetic regulatory networks (GRN). These networks capture all possible features of cells and are responsible for the immense levels of adaptation characteristic to living systems. At any point in time only small subsets of these networks are active. Any active subset of the GRN leads to the expression of particular sets of molecules (expression modes). The subsets of active networks change over time, leading to the observed complex dynamics of expression patterns. Understanding of this dynamics becomes increasingly important in systems biology and medicine. While the importance of transcription rates and catalytic interactions has been widely recognized in modeling genetic regulatory systems, the understanding of the role of degradation of biochemical agents (mRNA, protein) in regulatory dynamics remains limited. Recent experimental data suggests that there exists a functional relation between mRNA and protein decay rates and expression modes. In this paper we propose a model for the dynamics of successions of sequences of active subnetworks of the GRN. The model is able to reproduce key characteristics of molecular dynamics, including homeostasis, multi-stability, periodic dynamics, alternating activity, differentiability, and self-organized critical dynamics. Moreover the model allows to naturally understand the mechanism behind the relation between decay rates and expression modes. The model explains recent experimental observations that decay-rates (or turnovers) vary between differentiated tissue-classes at a general systemic level and highlights the role of intracellular decay rate control mechanisms in cell differentiation.Comment: 16 pages, 5 figure

    Photoswitchable diacylglycerols enable optical control of protein kinase C.

    Get PDF
    Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling
    corecore