4,520 research outputs found

    A Precision Calculation of the Next-to-Leading Order Energy-Energy Correlation Function

    Get PDF
    The O(alpha_s^2) contribution to the Energy-Energy Correlation function (EEC) of e+e- -> hadrons is calculated to high precision and the results are shown to be larger than previously reported. The consistency with the leading logarithm approximation and the accurate cancellation of infrared singularities exhibited by the new calculation suggest that it is reliable. We offer evidence that the source of the disagreement with previous results lies in the regulation of double singularities.Comment: 6 pages, uuencoded LaTeX and one eps figure appended Complete paper as PostScript file (125 kB) available at: http://www.phys.washington.edu/~clay/eecpaper1/paper.htm

    Nuclear dependence coefficient α(A,qT)\alpha(A,q_T) for the Drell-Yan and J/ψ\psi production

    Full text link
    Define the nuclear dependence coefficient α(A,qT)\alpha(A,q_T) in terms of ratio of transverse momentum spectrum in hadron-nucleus and in hadron-nucleon collisions: dσhAdqT2/dσhNdqT2≡Aα(A,qT)\frac{d\sigma^{hA}}{dq_T^2}/ \frac{d\sigma^{hN}}{dq_T^2}\equiv A^{\alpha(A,q_T)}. We argue that in small qTq_T region, the α(A,qT)\alpha(A,q_T) for the Drell-Yan and J/ψ\psi production is given by a universal function:\ a+bqT2a+b q_T^2, where parameters a and b are completely determined by either calculable quantities or independently measurable physical observables. We demonstrate that this universal function α(A,qT)\alpha(A,q_T) is insensitive to the A for normal nuclear targets. For a color deconfined nuclear medium, the α(A,qT)\alpha(A,q_T) becomes strongly dependent on the A. We also show that our α(A,qT)\alpha(A,q_T) for the Drell-Yan process is naturally linked to perturbatively calculated α(A,qT)\alpha(A,q_T) at large qTq_T without any free parameters, and the α(A,qT)\alpha(A,q_T) is consistent with E772 data for all qTq_T.Comment: latex, 28 pages, 10 figures, updated two figures, and add more discussion

    Sound Speeds, Cracking and Stability of Self-Gravitating Anisotropic Compact Objects

    Full text link
    Using the the concept of cracking we explore the influence of density fluctuations and local anisotropy have on the stability of local and non-local anisotropic matter configurations in general relativity. This concept, conceived to describe the behaviour of a fluid distribution just after its departure from equilibrium, provides an alternative approach to consider the stability of selfgravitating compact objects. We show that potentially unstable regions within a configuration can be identify as a function of the difference of propagations of sound along tangential and radial directions. In fact, it is found that these regions could occur when, at particular point within the distribution, the tangential speed of sound is greater than radial one.Comment: 17 pages, 8 figures, 4 new references added. typos correcte

    Determination of the QCD color factor ratio CA/CF from the scale dependence of multiplicity in three jet events

    Get PDF
    I examine the determination of the QCD color factor ratio CA/CF from the scale evolution of particle multiplicity in e+e- three jet events. I fit an analytic expression for the multiplicity in three jet events to event samples generated with QCD multihadronic event generators. I demonstrate that a one parameter fit of CA/CF yields the expected result CA/CF=2.25 in the limit of asymptotically large energies if energy conservation is included in the calculation. In contrast, a two parameter fit of CA/CF and a constant offset to the gluon jet multiplicity, proposed in a recent study, does not yield CA/CF=2.25 in this limit. I apply the one parameter fit method to recently published data of the DELPHI experiment at LEP and determine the effective value of CA/CF from this technique, at the finite energy of the Z0 boson, to be 1.74+-0.03+-0.10, where the first uncertainty is statistical and the second is systematic.Comment: 20 pages including 6 figures Version 2 corrects typographical error in equation (2

    Composite Scalars at LEP: Constraining Technicolor Theories

    Full text link
    LEPI and LEPII data can be used to constrain technicolor models with light, neutral pseudo-Nambu-Goldstone bosons, Pa. We use published limits on branching ratios and cross sections for final states with photons, large missing energy, jet pairs, and b bbar pairs to constrain the anomalous Pa Z0 Z0, Pa Z0 photon, and Pa photon photon couplings. From these results, we derive bounds on the size of the technicolor gauge group and the number of technifermion doublets in models such as Low-scale Technicolor.Comment: 27 pages (including title page), 15 figures, 6 tables. version 2: In addressing PRD referee comments, we have significantly expanded our manuscript, to include detailed discussion of limits from LEP II data, as well as expanding the number or specific models to which we apply our results. As a result, we have changed the title from "Z0 decays to composite scalars: constraining technicolor theories

    The reaction Δ+N→N+N+ϕ\Delta+N\to N+N+\phi in ion-ion collisions

    Full text link
    We study the threshold ϕ\phi-meson production in the process Δ+N→N+N+ϕ\Delta+N\to N+N+\phi, which appears as a possible important mechanism in high energy nuclei-nuclei collisions. The isotopic invariance of the strong interaction and the selection rules due to P-parity and total angular momentum result in a general and model independent parametrization of the spin structure of the matrix element in terms of three partial amplitudes. In the framework of one-pion exchange model these amplitudes can be derived in terms of the two threshold partial amplitudes for the process π+N→N+ϕ\pi+N\to N+\phi. We predict the ratio of cross sections for ϕ−\phi-meson production in pppp- and ΔN\Delta N-collisions and the polarization properties of the ϕ\phi-meson, in Δ+N→N+N+ϕ\Delta+N\to N+N+\phi, as a function of a single parameter, which characterizes the relative role of transversal and longitudinal ϕ\phi-meson polarizations in the process π+N→N+ϕ\pi+N\to N+\phi.Comment: 10 pages 3 figure

    Isolated Prompt Photon Production in Hadronic Final States of e+e−e^+e^- Annihilation

    Get PDF
    We provide complete analytic expressions for the isolated prompt photon production cross section in e+e−e^+e^- annihilation reactions through one-loop order in quantum chromodynamics (QCD) perturbation theory. Functional dependences on the isolation cone size ÎŽ\delta and isolation energy parameter Ï”\epsilon are derived. The energy dependence as well as the full angular dependence of the cross section on Ξγ\theta_\gamma are displayed, where Ξγ\theta_\gamma specifies the direction of the photon with respect to the e+e−e^+e^- collision axis. We point out that conventional perturbative QCD factorization breaks down for isolated photon production in e+e−e^+e^- annihilation reactions in a specific region of phase space. We discuss the implications of this breakdown for the extraction of fragmentation functions from e+e−e^+e^- annihilation data and for computations of prompt photon production in hadron-hadron reactions.Comment: 54 pages RevTeX plus 19 postscript figures submitted together in one compressed fil

    A gobal fit to the anomalous magnetic moment, b->s gamma and Higgs limits in the constrained MSSM

    Get PDF
    New data on the anomalous magnetic moment a_mu of the muon together with the b->s gamma decay rate are considered within the supergravity inspired constrained minimal supersymmetric model. We perform a global statistical chi^2 analysis of these data and show that the allowed region of parameter space is bounded from below by the Higgs limit, which depends on the trilinear coupling and from above by the anomalous magnetic moment a_mu. The newest b->s gamma data deviate 1.7 sigma from recent SM calculations and prefer a similar parameter region as the 2.6 sigma deviation from a_mu.Comment: 12 pages, 7 figs. Refs. update

    Exact Einstein-scalar field solutions for formation of black holes in a cosmological setting

    Get PDF
    We consider self-interacting scalar fields coupled to gravity. Two classes of exact solutions to Einstein's equations are obtained: the first class corresponds to the minimal coupling, the second one to the conformal coupling. One of the solutions is shown to describe a formation of a black hole in a cosmological setting. Some properties of this solution are described. There are two kinds of event horizons: a black hole horizon and cosmological horizons. The cosmological horizons are not smooth. There is a mild curvature singularity, which affects extended bodies but allows geodesics to be extended. It is also shown that there is a critical value for a parameter on which the solution depends. Above the critical point, the black hole singularity is hidden within a global black hole event horizon. Below the critical point, the singularity appears to be naked. The relevance to cosmic censorship is discussed.Comment: 25 pages, 2 figure

    Differential Cross Section for Higgs Boson Production Including All-Orders Soft Gluon Resummation

    Full text link
    The transverse momentum QTQ_T distribution is computed for inclusive Higgs boson production at the energy of the CERN Large Hadron Collider. We focus on the dominant gluon-gluon subprocess in perturbative quantum chromodynamics and incorporate contributions from the quark-gluon and quark-antiquark channels. Using an impact-parameter bb-space formalism, we include all-orders resummation of large logarithms associated with emission of soft gluons. Our resummed results merge smoothly at large QTQ_T with the fixed-order expectations in perturbative quantum chromodynamics, as they should, with no need for a matching procedure. They show a high degree of stability with respect to variation of parameters associated with the non-perturbative input at low QTQ_T. We provide distributions dσ/dydQTd\sigma/dy dQ_T for Higgs boson masses from MZM_Z to 200 GeV. The average transverse momentum at zero rapidity yy grows approximately linearly with mass of the Higgs boson over the range MZ<mh≃0.18mh+18M_Z < m_h \simeq 0.18 m_h + 18 ~GeV. We provide analogous results for ZZ boson production, for which we compute ≃25 \simeq 25 GeV. The harder transverse momentum distribution for the Higgs boson arises because there is more soft gluon radiation in Higgs boson production than in ZZ production.Comment: 42 pages, latex, 26 figures. All figures replaced. Some changes in wording. Published in Phys. Rev. D67, 034026 (2003
    • 

    corecore