1,103 research outputs found
Influence of low and high pressure baroreceptors on plasma renin activity in humans
The effects of low and high pressure baroreceptors on plasma renin activity (immunoassay) were evaluated using graded lower body suction (LBS) in six healthy men. LBS at -10 and -20 mmHg for 10 min decreased central venous pressure without changing arterial pressure and thereby presumably reduced low but not high pressure baroreceptor inhibition of renin release. LBS at these levels produced forearm vasoconstriction, but did not increase renin. LBS at -40 mmHG decreased central venous and arterial pulse pressure and thus reduced both low and high pressure baroreceptor inhibition. LBS at this level produced forearm vasoconstriction and tachycardia and increased renin. In summary, reduction in low pressure baroreceptor inhibition in humans did not increase renin in the presence of physiological tonic inhibition from high pressure baroreceptors. Increases in renin did not occur until there was combined reduction of high and low pressure baroreceptor inhibition on plasma renin activity
Influence of central venous pressure upon sinus node responses to arterial baroreflex stimulation in man
Measurements were made of sinus node responses to arterial baroreceptor stimulation with phenylephrine injection or neck suction, before and during changes of central venous pressure provoked by lower body negative pressure or leg and lower truck elevation. Variations of central venous pressure between 1.1 and 9.0 mm Hg did not influence arterial baroreflex mediated bradycardia. Baroreflex sinus node responses were augmented by intravenous propranolol, but the level of responses after propranolol was comparable during the control state, lower body negative pressure, and leg and trunk elevation. Sinus node responses to very brief baroreceptor stimuli applied during the transitions of central venous pressure also were comparable in the three states. The authors conclude that physiological variations of central venous pressure do not influence sinus node responses to arterial baroreceptor stimulation in man
A study to guide breeding of new cultivars of organic cherry tomato following a consumer-driven approach.
Agricultural studies focusing on the development and/or improvement of new varieties of fruits and vegetables usually prioritize the productivity, disease resistance, response to fertilization, and higher nutrient content. However, new product development needs to take into account not only flavour preference, but also consumer preference for appearance since without tasting products, consumers have to make decisions based on the way a product looks. The present study evaluated the sensory characteristics and consumer preference of ten promising accessions of organic cherry tomato for fresh consumption aiming at identifying the sensory attributes related to appearance that contributed to consumer liking/disliking the fruit. More specifically, the objective of the study was to guide producers regarding the target appearance attributes that play a role on consumer acceptance of cherry tomatoes. Ten accessions of organic cherry tomatoes were evaluated by a trained panel using the QDA methodology, and also by 80 tomato consumers for the acceptance of appearance and intention to purchase. The results achieved after integrating these two data sets (from the trained panel and consumers) in a multidimensional map allowed the elucidation of consumer liking of tomatoes in relation to the appearance, i.e. drivers of liking/disliking were identified. Results revealed that tomatoes with round shape and red colour (reddish) (cultivar ENAS 1031, ENAS 1010, ?Perinha Agua Branca?, Super Sweet, and ?Joana?) were the most liked cherry tomatoes. Those genotypes were also liked by the smallest segment (17.5% of participants) but for them unusual shapes (oblong and pear), orange-yellow colour, and bigger size were also liked. Despite the small number of participants in this study (80 consumers), new shapes and colours for the organic cherry tomatoes could be considered promising alternatives in the Brazilian market, and can be an opportunity for the producers of the state of Rio de Janeiro
Thermodynamic Forecasts of the Mediterranean Sea Acidification
Anthropogenic CO2 is a major driver of the present ocean acidification. This latter is threatening the marine ecosystems and has been identified as a major environmental and economic menace. This study aims to forecast from the thermodynamic equations, the acidification variation (ÎpH) of the Mediterranean waters over the next few decades and beyond this century. In order to do so, we calculated and fitted the theoretical values based upon the initial conditions from data of the 2013 MedSeA cruise. These estimates have been performed both for the Western and for the Eastern basins based upon their respective physical (temperature and salinity) and chemical (total alkalinity and total inorganic carbon) properties. The results allow us to point out four tipping points, including one when the Mediterranean Sea waters would become acid (pH<7). In order to provide an associated time scale to the theoretical results, we used two of the IPCC (2007) atmospheric CO2 scenarios. Under the most optimistic scenario of the âSpecial Report: Emissions Scenariosâ (SRES) of the IPCC (2007), the results indicate that in 2100, pH may decrease down to 0.245 in the Western basin and down to 0.242 in the Eastern basin (compared to the pre-industrial pH). Whereas for the most pessimistic SRES scenario of the IPCC (2007), the results for the year 2100, forecast a pH decrease down to 0.462 and 0.457, for the Western and for the Eastern basins, respectively. Acidification, which increased unprecedentedly in recent years, will rise almost similarly in both Mediterranean basins only well after the end of this century. These results further confirm that both basins may become undersaturated (< 1) with respect to calcite and aragonite (at the base of the mixed layer depth), only in the far future (in a few centuries)
Imaging Gold Nanoparticles in Living Cells Environments using Heterodyne Digital Holographic Microscopy
This paper describes an imaging microscopic technique based on heterodyne
digital holography where subwavelength-sized gold colloids can be imaged in
cell environment. Surface cellular receptors of 3T3 mouse fibroblasts are
labeled with 40 nm gold nanoparticles, and the biological specimen is imaged in
a total internal reflection configuration with holographic microscopy. Due to a
higher scattering efficiency of the gold nanoparticles versus that of cellular
structures, accurate localization of a gold marker is obtained within a 3D
mapping of the entire sample's scattered field, with a lateral precision of 5
nm and 100 nm in the x,y and in the z directions respectively, demonstrating
the ability of holographic microscopy to locate nanoparticles in living cells
environments
Motor adaptations to trunk perturbation: effects of experimental back pain and spinal tissue creep
In complex anatomical systems, such as the trunk, motor control theories suggest that many motor solutions can be implemented to achieve a similar goal. Although reflex mechanisms act as a stabilizer of the spine, how the central nervous system uses trunk redundancy to adapt neuromuscular responses under the influence of external perturbations, such as experimental pain or spinal tissue creep, is still unclear. The aim of this study was to identify and characterize trunk neuromuscular adaptations in response to unexpected trunk perturbations under the influence of spinal tissue creep and experimental back pain. Healthy participants experienced a repetition of sudden external trunk perturbations in two protocols: 1) 15 perturbations before and after a spinal tissue creep protocol and 2) 15 perturbations with and without experimental back pain. Trunk neuromuscular adaptations were measured by using high-density electromyography to record erector spinae muscle activity recruitment patterns and a motion analysis system. Muscle activity reflex attenuation was found across unexpected trunk perturbation trials under the influence of creep and pain. A similar area of muscle activity distribution was observed with or without back pain as well as before and after creep. No change of trunk kinematics was observed. We conclude that although under normal circumstances muscle activity adaptation occurs throughout the same perturbations, a reset of the adaptation process is present when experiencing a new perturbation such as experimental pain or creep. However, participants are still able to attenuate reflex responses under these conditions by using variable recruitment patterns of back muscles. NEW & NOTEWORTHY The present study characterizes, for the first time, trunk motor adaptations with high-density surface electromyography when the spinal system is challenged by a series of unexpected perturbations. We propose that the central nervous system is able to adapt neuromuscular responses by using a variable recruitment pattern of back muscles to maximize the motor performance, even under the influence of pain or when the passive structures of the spine are altere
Distributed Edge Connectivity in Sublinear Time
We present the first sublinear-time algorithm for a distributed
message-passing network sto compute its edge connectivity exactly in
the CONGEST model, as long as there are no parallel edges. Our algorithm takes
time to compute and a
cut of cardinality with high probability, where and are the
number of nodes and the diameter of the network, respectively, and
hides polylogarithmic factors. This running time is sublinear in (i.e.
) whenever is. Previous sublinear-time
distributed algorithms can solve this problem either (i) exactly only when
[Thurimella PODC'95; Pritchard, Thurimella, ACM
Trans. Algorithms'11; Nanongkai, Su, DISC'14] or (ii) approximately [Ghaffari,
Kuhn, DISC'13; Nanongkai, Su, DISC'14].
To achieve this we develop and combine several new techniques. First, we
design the first distributed algorithm that can compute a -edge connectivity
certificate for any in time .
Second, we show that by combining the recent distributed expander decomposition
technique of [Chang, Pettie, Zhang, SODA'19] with techniques from the
sequential deterministic edge connectivity algorithm of [Kawarabayashi, Thorup,
STOC'15], we can decompose the network into a sublinear number of clusters with
small average diameter and without any mincut separating a cluster (except the
`trivial' ones). Finally, by extending the tree packing technique from [Karger
STOC'96], we can find the minimum cut in time proportional to the number of
components. As a byproduct of this technique, we obtain an -time
algorithm for computing exact minimum cut for weighted graphs.Comment: Accepted at 51st ACM Symposium on Theory of Computing (STOC 2019
Climatological variations of total alkalinity and total dissolved inorganic carbon in the Mediterranean Sea surface waters
Abstract. A compilation of data from several cruises between 1998 and 2013 was used to derive polynomial fits that estimate total alkalinity (AT) and total dissolved inorganic carbon (CT) from measurements of salinity and temperature in the Mediterranean Sea surface waters. The optimal equations were chosen based on the 10-fold cross-validation results and revealed that second- and third-order polynomials fit the AT and CT data respectively. The AT surface fit yielded a root mean square error (RMSE) of ± 10.6 ÎŒmol kgâ1, and salinity and temperature contribute to 96 % of the variability. Furthermore, we present the first annual mean CT parameterization for the Mediterranean Sea surface waters with a RMSE of ± 14.3 ÎŒmol kgâ1. Excluding the marginal seas of the Adriatic and the Aegean, these equations can be used to estimate AT and CT in case of the lack of measurements. The identified empirical equations were applied on the 0.25° climatologies of temperature and salinity, available from the World Ocean Atlas 2013. The 7-year averages (2005â2012) showed that AT and CT have similar patterns with an increasing eastward gradient. The variability is influenced by the inflow of cold Atlantic waters through the Strait of Gibraltar and by the oligotrophic and thermohaline gradient that characterize the Mediterranean Sea. The summerâwinter seasonality was also mapped and showed different patterns for AT and CT. During the winter, the AT and CT concentrations were higher in the western than in the eastern basin. The opposite was observed in the summer where the eastern basin was marked by higher AT and CT concentrations than in winter. The strong evaporation that takes place in this season along with the ultra-oligotrophy of the eastern basin determines the increase of both AT and CT concentrations
- âŠ