2 research outputs found

    Landslide susceptibility mapping using support vector machine and GIS at the Golestan province, Iran

    Get PDF
    The main goal of this study is to produce landslide susceptibility map using GIS-based support vector machine (SVM) at Kalaleh Township area of the Golestan province, Iran. In this paper, six different types of kernel classifiers such as linear, polynomial degree of 2, polynomial degree of 3, polynomial degree of 4, radial basis function (RBF) and sigmoid were used for landslide susceptibility mapping. At the first stage of the study, landslide locations were identified by aerial photographs and field surveys, and a total of 82 landslide locations were extracted from various sources. Of this, 75% of the landslides (61 landslide locations) are used as training dataset and the rest was used as (21 landslide locations) the validation dataset. Fourteen input data layers were employed as landslide conditioning factors in the landslide susceptibility modelling. These factors are slope degree, slope aspect, altitude, plan curvature, profile curvature, tangential curvature, surface area ratio (SAR), lithology, land use, distance from faults, distance from rivers, distance from roads, topographic wetness index (TWI) and stream power index (SPI). Using these conditioning factors, landslide susceptibility indices were calculated using support vector machine by employing six types of kernel function classifiers. Subsequently, the results were plotted in ArcGIS and six landslide susceptibility maps were produced. Then, using the success rate and the prediction rate methods, the validation process was performed by comparing the existing landslide data with the six landslide susceptibility maps. The validation results showed that success rates for six types of kernel models varied from 79% to 87%. Similarly, results of prediction rates showed that RBF (85%) and polynomial degree of 3 (83%) models performed slightly better than other types of kernel (polynomial degree of 2 = 78%, sigmoid = 78%, polynomial degree of 4 = 78%, and linear = 77%) models. Based on our results, the differences in the rates (success and prediction) of the six models are not really significant. So, the produced susceptibility maps will be useful for general land-use planning

    Doing more with less: A comparative assessment between morphometric indices and machine learning models for automated gully pattern extraction (A case study: Dashtiari region, Sistan and Baluchestan Province)

    Get PDF
    Deep gullies in the Dashtiari Region prompted us to couple different morphometric indices obtained from a UAV-derived DEM to automatically extract gully signatures. The extraction of gully signatures is commonly undertaken via pattern recognition techniques, whose recent advancements seem to require more data and rather cumbersome modeling processes, making it even more difficult for those who are not well-versed in such contexts. Among these methods, object-based image analysis (OBIA), machine learning, and deep learning techniques are the most common. Conversely, here we took advantage of simple morphometric indices and their combinations for gully extraction, including valley depth (VD), topographic position index (TPI), positive openness (PO), red relief image map (RRIM), elevation, slope degree, and the coupled PO-DEM. Furthermore, we compared the automatically derived gully patterns to the manually extracted ones (treated as the ground truth), and their spatial autocorrelation was investigated. Additionally, the application of the classification tree (CT) as a powerful machine learning model was comparatively assessed for morphometric indices. The performance of the adopted pattern extraction techniques was estimated using four different metrics: precision index, true skill statistics (TSS), Cohen's kappa, and Matthews correlation coefficient (MCC). The results revealed that the single use of PO, TPI, and RRIM indices failed to reliably capture the gullies’ pattern, leading to partial success. Notably, combinations of indices showed that the coupled PO-DEM could successfully classify the gully presence locations from the absences and outperform the CT model in terms of both goodness-of-fit and generalization capacity (prediction power), considering all four-performance metrics. Hence, comparing the amount of time spent for manual delineation of gullies, the application of simple morphometric indices, and machine learning models is beyond comparison
    corecore