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1 Introduction

Erosion is a global concern that occurs in different forms because of the complex, interlaced connection of different
causative factors. Once a raindrop touches the soil surface, water erosion commences, forming a wide range of geo-
morphological facies.1 As a common form of water erosion, gullies occur mainly under the interaction of soil chem-
istry, land use, climate, slope, and the governing hydrological system.2–4 Large amounts of soils are washed away
along the unstable channels characterized as gullies, mostly formed on sparsely vegetated and unprotected lands.
Hence, extracting the gully pattern as a substantial part of spatial modeling and, thereby, risk analysis is of prime
importance.

Humans have become pattern seekers for their survival and their societal development. In parallel, pattern recog-
nition techniques have undoubtedly obviated that need. To date, different algorithms have been developed to differ-
entiate well the natural patterns, examples of which are supervised and unsupervised machine/deep learning
algorithms (ML and DL hereafter) and geographic object-based image analysis (GOBIA).5–9 However, these tech-
niques operate on big data to attain an acceptable level of success. Particularly for gully delineation, OBIA techniques
are a bottom-up trial-and-error optimization technique that entails several object features/variables such as mean,
standard deviation, length/width, and the gray level co-occurrence matrix (GLCM) (i.e., frequency of different
gray-level pixel combinations in a remotely sensed image).8 Additionally, GOBIA techniques require a tedious process
for learning and prediction/classification tasks. On the other hand, visual interpretation and extraction are cumber-
some procedures diluted by boundless human errors andmay not be an efficient choice in case of emergency due to the
time-consuming procedures involved.
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Morphometric indices with singular and multilateral connotations (e.g., topographic, topo-hydrologic, edaphic,
and botanic) can signify erosional processes subjected to different runoff mechanisms, especially in areas where lack
of data is a major concern. Most morphometric indices are DEM derivatives and follow practical, yet straightforward
functions. Many studies have focused on the application of morphometric indices in the context of spatial modeling of
different natural hazards, such as landslide susceptibility assessment,10–12 flood hazard analysis,13 and gully erosion
susceptibility mapping.14–16 However, the literature review attests that the single use of these indices (i.e., not fed to
other standalone models) for automated classification and pattern extraction of natural features has not yet been
addressed. Hence, the main idea behind this work is to build a simple yet practical conceptual model based on which
different single and combined morphometric indices are used to extract gully boundaries. Compared to the advance
and complicated models being used in literature, our proposed framework adopts a back-to-basics routine.

Based on these premises, this study sets out to fill this study gap and test the potential use of morphometric indices
for gully pattern extraction, using as a test site the Dashtiari region (Iran). We also took it a step further to compare the
results with a powerful family of machine learning models and classification trees and discuss their similarities and
differences.
2 Study area

The Dashtiari region is located in Sistan and Baluchestan Province, southeast of Iran (Fig. 1). It lies between the
latitudes of 25°4101700–25°4301000 N and the longitudes of 60°5603600–60°5903800 E. The selected parcel extends for
597.7ha, 14.2% of which (about 85ha) is affected by gullies. Elevation ranges between�0.1 and 18.7m a.s.l. Maximum
andminimum precipitations are 125 and 150mm. Maximum andminimum temperatures fluctuate between 21°C and
35°C. As with many gully-prone areas, massive gullies have deeply incised the entire region of Dashtiari. Silty soil has
made the area highly sensitive to erosional processes such that a small amount of rainfall can substantially change the
landscape due to discernible longitudinal and lateral extension of gullies. Successively widened and deepened, gullies
pose a direct threat to the infrastructures, and casualties are anticipated once they reach the villages. For instance, one
of the main gully branches have moved toward the Kajoo stream, the primary water source of residents’ drinking and
agricultural demands. Once gully branches and streamsmeet, the gullies’ intertwined networkwill drain out thewater
and make it out of the locals’ reach.
3 Materials and methods

3.1 Data compilation

ADJI Phantom 4 Pro (P4P) V2.0, was used to capture an area of approximately 6km2 (Fig. 2), fromwhich 3137 UAV
images were acquired and processed using Agisoft Metashape v1.6 and Inpho UASMaster v7.1 image processor tool.
Five hours of flight mission with a GSD of 3.88cm per pixel was accomplished on April 21–22, 2019, based onwhich an
orthophoto and a digital surface model (DSM) with a 15cm�15cm pixel resolution were produced for a Dashtiari
parcel, as presented in Fig. 1. Furthermore, Fig. 3 presents two excerpts of the gully branches.

A specialized team of cartographers and photogrammetrists manually drew the gully affected boundaries using
3Dstereo anaglyph glasses, which took approximately 6months to be completed.
3.2 Morphometric indices

Morphometric indices are valuable DEM derivatives that express indirect connotations of earth processes, such as
flood generation mechanisms and erosional features. Hence, they can be useful in areas characterized by a lack of data.
In this study, seven morphometric indices, including valley depth (VD), topographic position index (TPI), positive
openness (PO), red relief image map (RRIM), elevation, slope degree, and coupled PO-DEM (i.e., multiplication), were
purposively selected so that gully patterns could be differentiated and extracted. Table 1 lists the implications of each
index. The implementation process was carried out in SAGA-GIS,17 which offers many useful indices with a straight-
forward execution process.18 Additionally, the pixel resolution of the DSM layer was resized to 1m to expedite the
production process of the morphometric indices.



FIG. 1 Location of the study area in Iran (A), UAV-derived digital surface model (B), and the orthophoto of the region (C) with an excerpt site (D).



FIG. 2 Phantom 4 Pro V2.0—DJI.

FIG. 3 Cross-sectional excerpts of the gullies sprawled across the Dashtiari region.

TABLE 1 Functional role of the applied morphometric indices for gully pattern extraction.

Factor Function

Valley depth (VD) Delineation of ridges from valleys

Topographic position index
(TPI)

Delineation of upper, middle, and lower slopes

Positive openness (PO) Surface concavities from a given zenith

Red relief image map (RRIM) Effective visualization of subtle topographic features without
shading (positive openness-negative openness/2)

Elevation Differentiating highlands from lowlands

Slope degree Sudden topographical deflections such as gully edges

Multiplication of PO and
DEM (PO-DEM)

A data manipulation technique to incorporate surface concavity and
elevation
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3.3 Classification tree

In a nutshell, a classification tree (CT) is a way to unifying and classifying the most homogeneous sets from the
training samples. To attain this goal, CT adopts different techniques, including splitting, labeling, and pruning. For
classification purposes, the process starts with a random binary splitting guess and moves forward to consider differ-
ent partitions. This is performed through an iterative recursive partitioning process. Each time, the CT algorithm
selects the splitting threshold that leads to the largest increase in homogeneity. The Gini index measures such inequal-
ity with a fluctuating value between 0 and 1. A Gini value of 1 indicates that each record at the node belongs to a
different category, while a Gini value of 0 indicates that all the records at a node belong to the same category.19

The pruning process removes the leaves and branches that are not used to better predict real cases (unknown classes).
The leaves at the root comprise larger records and information and are trained on known classes. Moving forward, the
idiosyncrasy of the training records becomes more peculiar to those records and may offer no use for the prediction
task. Hence, the CT starts removing the small branches that fail to generalize using the validation dataset. The latter
helps the model circumvent the overfitting issue (i.e., being highly accustomed to the training samples such that the
model has poor generalization power). More mathematical details can be found in Breiman et al.19 In this work, the
produced morphometric indices and the rasterized training and validation presence:absence samples were used as
inputs to the CT model in ModEco software.20
3.4 Model training and validation

The Classification of morphometric indices and the employed machine learning model (i.e., CT) both operate in the
model training and validation phases. In this regard, machine learning models are specialized in training on partial
data (i.e., supervised learning), based on which the model can extract the emerging pattern for the remaining areas in
an unsupervised manner (i.e., cast off from the model training phase). Antithetically, the classification of a standalone
morphometric index entails finding an optimal threshold, which generally involves trial and error. Hence, we devel-
oped a new automated geospatial tool in ArcGIS called the Best Threshold Selector (BTS) to expedite this process. The
BTS operates on a pixel-based cross-validation learning scheme in which the raw (unclassified) morphometric index
together with the ground truth (presence-absence gully pixels) in the training zone are used as inputs (Fig. 4A).
Accordingly, the BTS initiates a recursive threshold-exploring process (Fig. 4B). This process starts with a random
guess (50% as a threshold cutoff ), whose classification success would be compared to 25% threshold addition (i.e.,
75%) and subtraction (i.e., 25%). This process continues until the BTS reaches an unchanged status in the success value
(i.e., a plateau). As a rule, BTS consistently follows a direction that leads to a higher success rate.

The success rate corresponds to the so-called optimization goal, represented by three success metrics: true skill sta-
tistics (TSS), Area under the receiver operating characteristic curve (AUC), and Cohen’s kappa. The tool automatically
calculates the optimal threshold value by selecting the desired metric and, accordingly, classifies the morphometric
index. For model training and validation, the region was arbitrarily partitioned into two representative areas. In par-
ticular, the easternmost part of the region, which is affected by two parallel gully branches, was selected for model
training, and the remaining area was kept apart to validate the model results (Fig. 5). Because of the abundance of
presence and absence pixels involved in the training and validation stages, obliged to the pixel-based cross-validation
technique embedded in BTS, the conventional sample balance issues (i.e., training:validation partitions) are obviated.
3.5 Performance assessment

The performance of the adopted morphometric indices andmachine learning model in gully pattern extraction was
based on four different metrics: precision, TSS, Cohen’s kappa, and Matthews correlation coefficient (MCC). Using
four main elements of the confusion matrix (i.e., TP, true positive; TN, true negative; FP, false positive; and FN, false
negative), these metrics can assess the performance of models from different aspects.21–23

Precision, also termed positive predictive value, is the proportion of correct predictions of presence locations (Eq. 1).
As its name implies, precision disregards errors emanating from incorrect predictions of absence locations.

Precision¼ TP
TP+FP

(1)

The TSS, referred to as Pierce’s skill score, uses more arguments of the confusion matrix, representing the model’s
ability to distinguish presence from absence (Eq. 2).



FIG. 4 The graphical user interface of the BTS tool in ArcGIS (A) and the embedded recursive threshold-exploring technique (B—larger arrows
represent preliminary search steps. Green arrows, as opposed to red ones, lead to higher success rates).

FIG. 5 The selected zones for model training and validation.
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TSS¼ TP
TP+FN

� FP
FP+TN

¼ Sensitivity + Specificity�1 (2)

Cohen’s kappa enables the user to compare the performance of the model for the outcome of random success (Eq. 3).

Kappa¼ TP+TNð Þ� TP+FNð Þ TP+FPð Þ+ FN+TNð Þ FP+TNð Þ½ �=T
T� TP+FNð Þ TP+FPð Þ+ FN+TNð Þ FP+TNð Þf g=T½ � (3)

The MCC is a useful correlation coefficient that compares binary classification success, incorporating true and false
positive and negative elements (Eq. 4).
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MCC¼ TP�TNð Þ� FP�FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP+FPð Þ TP+FNð Þ TN+FPð Þ TN+FNð Þp (4)

The calculation of the metrics mentioned above was carried out in a modified version of an ArcGIS tool called per-
formance metric tool (PMT). The new version of the PMT is capable of using rasterized samples of presence and
absence instead of considering representative point samples. Compared to the older version, PMT-Modified would
better reflect the models’ true success by creating an all-inclusive matrix of samples. Additionally, PMT-Modified
is capable of presenting the elements of the confusion matrix (i.e., TP, TN, FP, and FN) in the form of a raster map
to spatially pinpoint the strength of the models (i.e., TP and TN) and weaknesses (i.e., FP and FN).
4 Results and discussion

Fig. 6 presents the classifications derived from morphometric indices (using the BTS tool) and classification trees.
A visual comparison between the classification results indicates that all the maps performed well in the training zone,
(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6 Gully presence-absence classes derived frommorphometric indices (A: DEM, B: positive openness, C: positive openness�DEM, D: RRIM,
E: slope, F: TPI, G: valley depth) and classification tree model (H).
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while asymmetries became more transparent in the validation zone. From the eight classification maps presented in
Fig. 6, it is evident that elevation (DEM), coupled PO-DEM, valley depth, and classification tree performed far better
than the other indices. The reason may be the functions presented by each index (Table 1).

Elevation as the main proxy for various morphometric indices may seem highly beneficial for gully extraction, as
shown by the classification presented in Fig. 6. However, as previously mentioned, two gully branches with different
geometries (i.e., a shallow, less-digitated gully at the upper part and a deep, large gully at the lower part) are discern-
ible in the easternmost sector of the study area, which makes it difficult to assign a single threshold value to each mor-
phometric index. In other words, a single elevation point may not effectively differentiate the gully affected pattern
from nongully areas because two gullies with different geometrical features co-exist in the same site. Similarly, valley
depth operates on elevation difference and vertical distance to the channel network (referred to as ridge-level inter-
polation), which explains its small deficiencies. Positive openness represents surface concavities, which not only char-
acterize gullies but also almost anything that exhibits a form of concavity, including a small pit. Hence, conceptualizing
the functions each index presented and taking a glance at the gullies together with some trial-and-error factor com-
bination sessions led us to the coupled PO-DEM. The elevation difference helps PO better distinguish gully patterns
and exclude small concavities. Testing two arithmetic operations (i.e., addition and multiplication) and investigating
the pixel histogram showed that the multiplied PO-DEM exhibits a better breaking point for classification than the
added PO-DEM (Fig. 7). In essence, multiplication poses a more restrictive function on the combined indices, while
addition creates a relatively smooth map that may not serve best for pattern extraction. On the other hand, the CT also
leads to an outstanding classification. Fig. 8 depicts the graphical success and error rates posed by PO, DEM, PO-DEM,
FIG. 7 Histogram created for added PO-DEM (A) and multiplied PO-DEM (B).



FIG. 8 Calculated true positive (TP), true negative (TN), false positive (FP), and false-negative (FN) values for some of the employed morpho-
metric indices (PO, DEM, and PO�DEM) and the machine learning model (CT) using PMT-modified.
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and CT, making it evident that the combination of DEM and PO results in a better gully pattern extraction by reducing
the errors encountered in the validation zone.

More dissimilarities between the CT and the well-performing morphometric indices can be derived from the con-
fusion matrix and its derivative performance metrics (Tables 2 and 3, Figs. 9 and 10). The elements of the confusion
matrix and the averaged value of the performance metrics are unanimously in line with our previous visual check,
based on which PO-DEM, CT, elevation, and valley depth perform better than other indices. More significantly,
the PO-DEM that is derived from a simple factor multiplication outperforms a powerful machine learning model, CT.

Although the outstanding performance of PO-DEM is indebted to the automated threshold detectionmade possible
by the BTS tool, the CT follows more complicated recursive training sessions, yet a simple factor combination super-
sedes its result. In general, a timewise comparison of manually and automatically extracted gully patterns justifies the
fact that the latter presents far more promising results. The precision of the extracted gullies using PO-DEM and CT,
which may take several minutes to some hours, compared to those manually drawn in 6months, is beyond expecta-
tion. Lastly, this work does not intend to diminish the outstanding results provided by CT. Instead, it encourages the
critical role of conceptual models, the merits of simple morphometric indices, and their notable standalone perfor-
mances, rather than being inputted into complicated black-box models.
TABLE 2 Calculated confusion matrix elements and performance metrics for different employed morphometric indices and machine
learning models in the training stage (bold values represent the highest performance).

Factor/
Models

Optimal threshold
value detected by
BTS Value

Training

Precision TSS
Cohen’s
Kappa MCC AverageTP TN FP FN

PO 75.00 1.45 333,923 1,434,641 215,398 42,068 0.608 0.758 0.6431 0.6625 0.6678

PO_DEM 30.86 9.66 355,124 1,531,949 118,090 20,867 0.751 0.873 0.7937 0.8021 0.8048

TPI 41.76 �0.17 259,001 1,499,992 150,047 116,990 0.633 0.598 0.5783 0.5791 0.5971

Valley 37.50 3.95 313,301 1,523,913 126,126 62,690 0.713 0.757 0.7105 0.7139 0.7236

Slope 9.12 7.15 236,656 1,285,795 364,244 139,335 0.394 0.409 0.332 0.3478 0.3706

Elevation 34.90 6.46 332,128 1,552,398 97,641 43,863 0.773 0.824 0.781 0.7838 0.7905

RRIM 43.65 �0.03 272,017 1,526,467 123,572 103,974 0.688 0.649 0.6358 0.6361 0.6520

CT Self-detected 357,841 1,527,886 122,153 18,150 0.746 0.878 0.793 0.8025 0.8047



TABLE 3 Calculated confusion matrix elements and performance metrics for different employed morphometric indices and machine
learning models in the validation stage (bold values represent the highest performance).

Factor/
Models

Optimal threshold
value detected by
BTS Value

Training

Precision TSS
Cohen’s
Kappa MCC AverageTP TN FP FN

PO 75.00 1.45 466,292 2,992,790 466,958 8492 0.5 0.847 0.598 0.6487 0.6484

PO_DEM 30.86 9.66 414,638 3,443,812 15,936 60,146 0.963 0.869 0.9051 0.9064 0.9108

TPI 41.76 �0.17 357,538 3,058,175 401,573 117,246 0.471 0.637 0.5062 0.5258 0.5350

Valley 37.50 3.95 361,922 3,430,942 28,806 112,862 0.926 0.754 0.8163 0.8212 0.8295

Slope 9.12 7.15 340,708 2,816,383 643,365 134,076 0.346 0.532 0.3635 0.3999 0.4103

Elevation 34.90 6.46 344,254 3,455,822 3926 130,530 0.989 0.724 0.818 0.8303 0.8402

RRIM 43.65 �0.03 367,886 3,109,528 350,220 106,898 0.512 0.674 0.5517 0.5681 0.5764

CT Self-detected 411,425 3,426,648 33,100 63,359 0.926 0.857 0.8812 0.8818 0.8864
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FIG. 9 Average performance of the employed morphometric indices and machine learning models in the training stage.
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FIG. 10 Average performance of the employed morphometric indices and machine learning models in the validation stage.
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5 Comparison, limitations, and future works

Literature review shows that a range of methods has been applied to extract gullies across different areas. Sheshu-
kov et al. tested several compound topographic index models in two paired catchments.14 Their results attest to the
high applicability of topographic indices in extracting the gully patterns, which is in line with our results. Shruthi et al.
investigated the application of object-based image analysis techniques for gully delineation.5 They found that the dif-
ferences between the gully pattern extracted by OBImethods and the ones manually extracted respectively account for
0.03% and 1.77% for two representative areas. Moreover, they found that gully-related edges are well detected by
OBIA methods and can considerably reduce the time spent on manual extraction, which is in complete accordance
with our findings. Rahmati et al. also tested the reliability of OBI techniques in gully extraction, which resulted in
an overall accuracy value of 92.4%.8 Phinzi et al. studied the accuracy of machine learning models for gully extraction
and found that the random forest and support vector machine models can result in outstanding performance values of
98.7% and 98.01%,9 which, in accordance with our results, justifies the use of machine learningmodels in unsupervised
feature classification.

In order to give amore reliable factor combination scheme in the Dashtiari region, wewould need to apply different
techniques (especially OBIA) on the same dataset, which is considered one of the limitations of thiswork. Additionally,
the proposed combined indices (i.e., PO-DEM) should be tested in different areas and gully types. Also, various data
configurations and spatial resolution may alter the defined classification thresholds. These points should be addressed
and tested in future studies and compared with the findings of this work.
6 Conclusion

Thiswork encourages back-to-basics conceptualmodeling using available and straightforward data.Morphometric
indices, as simple they may look, can reflect critical hydrological and erosional processes. According to our goal (i.e.,
gully pattern extraction), the application of morphometric indices was found to be highly beneficial and successful in
single-handedly extracting the gully pattern in a short time. Moreover, we presented how knowledge of a phenom-
enon can help form new and informative factors that would consequently lead to a highly representative model of
nature.

The comparative assessment of the coupled positive openness and elevation with a powerful machine learning
model justified that a simple factor combination can outperform a complicated machine learning model in terms of
both goodness-of-fit and generalization capacity (i.e., prediction). Moreover, the time spent producing PO-DEM or
implementing a machine learning model is beyond comparison, considering the 6months spent on the manual extrac-
tion of gullies. Finally, relying on the outstanding precision of morphometric indices in differentiating gully affected
from nongully areas, incorporating their results with further manual modifications as a semiautomated procedure
may yield the best possible results.
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