154 research outputs found

    Parameterized Algorithms for Graph Partitioning Problems

    Full text link
    We study a broad class of graph partitioning problems, where each problem is specified by a graph G=(V,E)G=(V,E), and parameters kk and pp. We seek a subset U⊆VU\subseteq V of size kk, such that α1m1+α2m2\alpha_1m_1 + \alpha_2m_2 is at most (or at least) pp, where α1,α2∈R\alpha_1,\alpha_2\in\mathbb{R} are constants defining the problem, and m1,m2m_1, m_2 are the cardinalities of the edge sets having both endpoints, and exactly one endpoint, in UU, respectively. This class of fixed cardinality graph partitioning problems (FGPP) encompasses Max (k,n−k)(k,n-k)-Cut, Min kk-Vertex Cover, kk-Densest Subgraph, and kk-Sparsest Subgraph. Our main result is an O∗(4k+o(k)Δk)O^*(4^{k+o(k)}\Delta^k) algorithm for any problem in this class, where Δ≥1\Delta \geq 1 is the maximum degree in the input graph. This resolves an open question posed by Bonnet et al. [IPEC 2013]. We obtain faster algorithms for certain subclasses of FGPPs, parameterized by pp, or by (k+p)(k+p). In particular, we give an O∗(4p+o(p))O^*(4^{p+o(p)}) time algorithm for Max (k,n−k)(k,n-k)-Cut, thus improving significantly the best known O∗(pp)O^*(p^p) time algorithm

    The high correlation between counts and area fractions of lipofuscin granules, a biomarker of oxidative stress in muscular dystrophies

    Get PDF
    Images of cryostat unstained sections of two skeletal muscles, diaphragm and extensor digitorum longus (EDL), from wild-type normal and dystrophic mdx mice were captured with a fluorescence microscope, binarised and analysed by an automated procedure using ImageJ free software. The numbers, Feret diameters and areas of autofluorescent lipofuscin (LF)-like granules in the sections were determined from the binary images. The mean numbers of counted LF granules per mm(3) muscle tissue correlated highly (r ≥ 0.9) with the area fractions of the granules in sections of both normal and mdx muscles. The similar distribution patterns of granule sizes in sections of diaphragm and EDL muscles are consistent with the high correlations

    Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping

    Get PDF
    Background: Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning the hand when it approaches an object. Methods: Two human subjects with tetraplegia used a robotic arm to complete object transport tasks with and without shared control. The shared control system was designed to provide a balance between BMI-derived intention and computer assistance. An autonomous robotic grasping system identified and tracked objects and defined stable grasp positions for these objects. The system identified when the user intended to interact with an object based on the BMI-controlled movements of the robotic arm. Using shared control, BMI controlled movements and autonomous grasping commands were blended to ensure secure grasps. Results: Both subjects were more successful on object transfer tasks when using shared control compared to BMI control alone. Movements made using shared control were more accurate, more efficient, and less difficult. One participant attempted a task with multiple objects and successfully lifted one of two closely spaced objects in 92 % of trials, demonstrating the potential for users to accurately execute their intention while using shared control. Conclusions: Integration of BMI control with vision-guided robotic assistance led to improved performance on object transfer tasks. Providing assistance while maintaining generalizability will make BMI systems more attractive to potential users. Trial registration: NCT01364480 and NCT01894802

    The morbidity and mortality following a diagnosis of peripheral arterial disease: Long-term follow-up of a large database

    Get PDF
    BACKGROUND: Awareness of the significance of peripheral arterial disease is increasing, but quantitative estimates of the ensuing burden and the impact of other risk factors remains limited. The objective of this study was to fill this need. METHODS: Morbidity and mortality were examined in 16,440 index patients diagnosed with peripheral arterial disease in Saskatchewan, Canada between 1985 and 1995. Medical history and patient characteristics were available retrospectively to January 1980 and follow-up was complete to March 1998. Crude and adjusted event rates were calculated and Kaplan-Meier survival curves estimated. Cox proportional hazards analyses were conducted to examine the effect of risk factors on these rates. Patients suffering a myocardial infarction or ischemic stroke in Saskatchewan provided two reference populations. RESULTS: Half of the index patients were male; the majority was over age 65; 73% had at least one additional risk factor at index diagnosis; 10% suffered a subsequent stroke, another 10% a myocardial infarction, and 49% died within the mean follow-up of 5.9 years. Annual mortality (8.2%) was higher among patients with PAD than after a myocardial infarction (6.3%) but slightly lower than that in patients suffering a stroke (11.3%). Index patients with comorbid disease (e.g., diabetes) were at highest risk of death and other events. CONCLUSION: A diagnosis of peripheral arterial disease is critical evidence of more widespread atherothrombotic disease, with substantial risks of subsequent cardiovascular events and death. Given that the majority has additional comorbidities, these risks are further increased

    Leukocytes Are Recruited through the Bronchial Circulation to the Lung in a Spontaneously Hypertensive Rat Model of COPD

    Get PDF
    Chronic obstructive pulmonary disease (COPD) kills approximately 2.8 million people each year, and more than 80% of COPD cases can be attributed to smoking. Leukocytes recruited to the lung contribute to COPD pathology by releasing reactive oxygen metabolites and proteolytic enzymes. In this work, we investigated where leukocytes enter the lung in the early stages of COPD in order to better understand their effect as a contributor to the development of COPD. We simultaneously evaluated the parenchyma and airways for neutrophil accumulation, as well as increases in the adhesion molecules and chemokines that cause leukocyte recruitment in the early stages of tobacco smoke induced lung disease. We found neutrophil accumulation and increased expression of adhesion molecules and chemokines in the bronchial blood vessels that correlated with the accumulation of leukocytes recovered from the lung. The expression of adhesion molecules and chemokines in other vascular beds did not correlate with leukocytes recovered in bronchoalveolar lavage fluid (BALF). These data strongly suggest leukocytes are recruited in large measure through the bronchial circulation in response to tobacco smoke. Our findings have important implications for understanding the etiology of COPD and suggest that pharmaceuticals designed to reduce leukocyte recruitment through the bronchial circulation may be a potential therapy to treat COPD

    Inference of Relationships in Population Data Using Identity-by-Descent and Identity-by-State

    Get PDF
    It is an assumption of large, population-based datasets that samples are annotated accurately whether they correspond to known relationships or unrelated individuals. These annotations are key for a broad range of genetics applications. While many methods are available to assess relatedness that involve estimates of identity-by-descent (IBD) and/or identity-by-state (IBS) allele-sharing proportions, we developed a novel approach that estimates IBD0, 1, and 2 based on observed IBS within windows. When combined with genome-wide IBS information, it provides an intuitive and practical graphical approach with the capacity to analyze datasets with thousands of samples without prior information about relatedness between individuals or haplotypes. We applied the method to a commonly used Human Variation Panel consisting of 400 nominally unrelated individuals. Surprisingly, we identified identical, parent-child, and full-sibling relationships and reconstructed pedigrees. In two instances non-sibling pairs of individuals in these pedigrees had unexpected IBD2 levels, as well as multiple regions of homozygosity, implying inbreeding. This combined method allowed us to distinguish related individuals from those having atypical heterozygosity rates and determine which individuals were outliers with respect to their designated population. Additionally, it becomes increasingly difficult to identify distant relatedness using genome-wide IBS methods alone. However, our IBD method further identified distant relatedness between individuals within populations, supported by the presence of megabase-scale regions lacking IBS0 across individual chromosomes. We benchmarked our approach against the hidden Markov model of a leading software package (PLINK), showing improved calling of distantly related individuals, and we validated it using a known pedigree from a clinical study. The application of this approach could improve genome-wide association, linkage, heterozygosity, and other population genomics studies that rely on SNP genotype data

    Levosimendan Administration in Limb Ischemia: Multicomponent Signaling Serving Kidney Protection

    Get PDF
    AIMS AND OBJECTIVES: Acute renal failure is a severe complication of lower extremity major arterial reconstructions, which could even be fatal. Levosimendan is a dual-acting positive inotropic and vasodilatory agent, which is suspected to have protective effects against cardiac ischemia. However, there is no data available on lower limb or remote organ ischemic injuries therefore the aim of the study was to investigate the effect of levosimendan on lower limb ischemia-reperfusion injury and the corollary renal dysfunction. METHODS: Male Wistar rats underwent 180 min bilateral lower limb ischemia followed by 4 or 24 hours of reperfusion. Intravenous Levosimendan was administered continuously (0.2mug/bwkg/min) throughout the whole course of ischemia and the first 3h of reperfusion. Results were compared with sham-operated and ischemia-reperfusion groups. Hemodynamic monitoring was performed by invasive arterial blood pressure measurement. Kidney and lower limb muscle microcirculation was registered by a laser Doppler flowmeter. After 4h and 24h of reperfusion, serum, urine and histological samples were collected. RESULTS: Systemic hemodynamic parameters and microcirculation of kidney and the lower limb significantly improved in the Levosimendan treated group. Muscle viability was significantly preserved 4 and 24 hours after reperfusion. At the same time, renal functional laboratory tests and kidney histology demonstrated significantly less expressive kidney injury in Levosimendan groups. TNF-alpha levels were significantly less elevated in the Levosimendan group 4 hours after reperfusion. CONCLUSION: The results claim a protective role for Levosimendan administration during major vascular surgeries to prevent renal complications

    Protein kinase C and cardiac dysfunction: a review

    Get PDF
    Heart failure (HF) is a physiological state in which cardiac output is insufficient to meet the needs of the body. It is a clinical syndrome characterized by impaired ability of the left ventricle to either fill or eject blood efficiently. HF is a disease of multiple aetiologies leading to progressive cardiac dysfunction and it is the leading cause of deaths in both developed and developing countries. HF is responsible for about 73,000 deaths in the UK each year. In the USA, HF affects 5.8 million people and 550,000 new cases are diagnosed annually. Cardiac remodelling (CD), which plays an important role in pathogenesis of HF, is viewed as stress response to an index event such as myocardial ischaemia or imposition of mechanical load leading to a series of structural and functional changes in the viable myocardium. Protein kinase C (PKC) isozymes are a family of serine/threonine kinases. PKC is a central enzyme in the regulation of growth, hypertrophy, and mediators of signal transduction pathways. In response to circulating hormones, activation of PKC triggers a multitude of intracellular events influencing multiple physiological processes in the heart, including heart rate, contraction, and relaxation. Recent research implicates PKC activation in the pathophysiology of a number of cardiovascular disease states. Few reports are available that examine PKC in normal and diseased human hearts. This review describes the structure, functions, and distribution of PKCs in the healthy and diseased heart with emphasis on the human heart and, also importantly, their regulation in heart failure
    • …
    corecore