69 research outputs found

    A systematic review of randomised controlled trials on the effectiveness of exercise programs on lumbo pelvic pain among postnatal women

    Get PDF
    Background: A substantial number of women tend to be affected by Lumbo Pelvic Pain (LPP) following child birth. Physical exercise is indicated as a beneficial method to relieve LPP, but individual studies appear to suggest mixed findings about its effectiveness. This systematic review aimed to synthesise evidence from randomised controlled trials on the effectiveness of exercise on LPP among postnatal women to inform policy, practice and future research. Methods: A systematic review was conducted of all randomised controlled trials published between January 1990 and July 2014, identified through a comprehensive search of following databases: PubMed, PEDro, Embase, Cinahl, Medline, SPORTDiscus, Cochrane Pregnancy and Childbirth Group’s Trials Register, and electronic libraries of authors’institutions. Randomised controlled trials were eligible for inclusion if the intervention comprised of postnatal exercise for women with LPP onset during pregnancy or within 3 months after delivery and the outcome measures included changes in LPP. Selected articles were assessed using the PEDro Scale for methodological quality and findings were synthesised narratively as meta-analysis was found to be inappropriate due to heterogeneity among included studies. Results: Four randomised controlled trials were included, involving 251 postnatal women. Three trials were rated as of ‘good’ methodological quality. All trials, except one, were at low risk of bias. The trials included physical exercise programs with varying components, differing modes of delivery, follow up times and outcome measures. Intervention in one trial, involving physical therapy with specific stabilising exercises, proved to be effective in reducing LPP intensity. An improvement in gluteal pain on the right side was reported in another trial and a significant difference in pain frequency in another. Conclusion: Our review indicates that only few randomised controlled trials have evaluated the effectiveness of exercise on LPP among postnatal women. There is also a great amount of variability across existing trials in the components of exercise programs, modes of delivery, follow up times and outcome measures. While there is some evidence to indicate the effectiveness of exercise for relieving LPP, further good quality trials are needed to ascertain the most effective elements of postnatal exercise programs suited for LPP treatment

    Alpha-Synuclein Cell-to-Cell Transfer and Seeding in Grafted Dopaminergic Neurons In Vivo

    Get PDF
    Several people with Parkinson’s disease have been treated with intrastriatal grafts of fetal dopaminergic neurons. Following autopsy, 10–22 years after surgery, some of the grafted neurons contained Lewy bodies similar to those observed in the host brain. Numerous studies have attempted to explain these findings in cell and animal models. In cell culture, α-synuclein has been found to transfer from one cell to another, via mechanisms that include exosomal transport and endocytosis, and in certain cases seed aggregation in the recipient cell. In animal models, transfer of α-synuclein from host brain cells to grafted neurons has been shown, but the reported frequency of the event has been relatively low and little is known about the underlying mechanisms as well as the fate of the transferred α-synuclein. We now demonstrate frequent transfer of α-synuclein from a rat brain engineered to overexpress human α-synuclein to grafted dopaminergic neurons. Further, we show that this model can be used to explore mechanisms underlying cell-to-cell transfer of α-synuclein. Thus, we present evidence both for the involvement of endocytosis in α-synuclein uptake in vivo, and for seeding of aggregation of endogenous α-synuclein in the recipient neuron by the transferred α-synuclein. Finally, we show that, at least in a subset of the studied cells, the transmitted α-synuclein is sensitive to proteinase K. Our new model system could be used to test compounds that inhibit cell-to-cell transfer of α-synuclein and therefore might retard progression of Parkinson neuropathology

    Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells

    Get PDF
    Pluripotent stem cells hold great promises for regenerative medicine. They might become useful as a universal source for a battery of new cell replacement therapies. Among the major concerns for the clinical application of stem cell-derived grafts are the risks of immune rejection and tumor formation. Pluripotency and tumorigenicity are closely linked features of pluripotent stem cells. However, the capacity to form teratomas or other tumors is not sufficiently described by inherited features of a stem cell line or a stem cell-derived graft. The tumorigenicity always depends on the inability of the recipient to reject the tumorigenic cells. This review summarizes recent data on the tumorigenicity of pluripotent stem cells in immunodeficient, syngeneic, allogeneic, and xenogeneic hosts. The effects of immunosuppressive treatment and cell differentiation are discussed. Different immune effector mechanisms appear to be involved in the rejection of undifferentiated and differentiated cell populations. Elements of the innate immune system, such as natural killer cells and the complement system, which are active also in syngeneic recipients, appear to preferentially reject undifferentiated cells. This effect could reduce the risk of tumor formation in immunocompetent recipients. Cell differentiation apparently increases susceptibility to rejection by the adaptive immune system in allogeneic hosts. The current data suggest that the immune system of the recipient has a major impact on the outcome of pluripotent stem cell transplantation, whether it is rejection, engraftment, or tumor development. This has to be considered when the results of experimental transplantation models are interpreted and even more when translation into clinics is planned

    Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms

    Get PDF
    Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration

    Post-Traumatic Stress in Head and Neck Cancer Survivors and their Partners

    Get PDF
    The publisher's agreement states that: Author(s) retain the right to make an AAM (Author's Accepted Manuscript )of their Article available for public release on any of the following 12 months after first publication ("Embargo Period"): their employer's internal website; their institutional and/or funder repositories. AAMs may also be deposited in such repositories immediately on acceptance, provided that they are not made publicly available until after the Embargo Period. An acknowledgement in the following form should be included, together with a link to the published version on the publisher's website: “This is a post-peer-review, pre-copyedit version of an article published in [insert journal title]. The final authenticated version is available online at: http://dx.doi.org/[insert DOI]”.The publisher's agreement states that: Author(s) retain the right to make an AAM (Author's Accepted Manuscript )of their Article available for public release on any of the following 12 months after first publication ("Embargo Period"): their employer's internal website; their institutional and/or funder repositories. AAMs may also be deposited in such repositories immediately on acceptance, provided that they are not made publicly available until after the Embargo Period. An acknowledgement in the following form should be included, together with a link to the published version on the publisher's website: “This is a post-peer-review, pre-copyedit version of an article published in [insert journal title]. The final authenticated version is available online at: http://dx.doi.org/[insert DOI]”.The publisher's agreement states that: Author(s) retain the right to make an AAM (Author's Accepted Manuscript )of their Article available for public release on any of the following 12 months after first publication ("Embargo Period"): their employer's internal website; their institutional and/or funder repositories. AAMs may also be deposited in such repositories immediately on acceptance, provided that they are not made publicly available until after the Embargo Period. An acknowledgement in the following form should be included, together with a link to the published version on the publisher's website: “This is a post-peer-review, pre-copyedit version of an article published in [insert journal title]. The final authenticated version is available online at: http://dx.doi.org/[insert DOI]”.The publisher's agreement states that: Author(s) retain the right to make an AAM (Author's Accepted Manuscript )of their Article available for public release on any of the following 12 months after first publication ("Embargo Period"): their employer's internal website; their institutional and/or funder repositories. AAMs may also be deposited in such repositories immediately on acceptance, provided that they are not made publicly available until after the Embargo Period. An acknowledgement in the following form should be included, together with a link to the published version on the publisher's website: “This is a post-peer-review, pre-copyedit version of an article published in [insert journal title]. The final authenticated version is available online at: http://dx.doi.org/[insert DOI]”.The publisher's agreement states that: Author(s) retain the right to make an AAM (Author's Accepted Manuscript )of their Article available for public release on any of the following 12 months after first publication ("Embargo Period"): their employer's internal website; their institutional and/or funder repositories. AAMs may also be deposited in such repositories immediately on acceptance, provided that they are not made publicly available until after the Embargo Period. An acknowledgement in the following form should be included, together with a link to the published version on the publisher's website: “This is a post-peer-review, pre-copyedit version of an article published in [insert journal title]. The final authenticated version is available online at: http://dx.doi.org/[insert DOI]”.The publisher's agreement states that: Author(s) retain the right to make an AAM (Author's Accepted Manuscript )of their Article available for public release on any of the following 12 months after first publication ("Embargo Period"): their employer's internal website; their institutional and/or funder repositories. AAMs may also be deposited in such repositories immediately on acceptance, provided that they are not made publicly available until after the Embargo Period. An acknowledgement in the following form should be included, together with a link to the published version on the publisher's website: “This is a post-peer-review, pre-copyedit version of an article published in [insert journal title]. The final authenticated version is available online at: http://dx.doi.org/[insert DOI]”.The publisher's agreement states that: Author(s) retain the right to make an AAM (Author's Accepted Manuscript )of their Article available for public release on any of the following 12 months after first publication ("Embargo Period"): their employer's internal website; their institutional and/or funder repositories. AAMs may also be deposited in such repositories immediately on acceptance, provided that they are not made publicly available until after the Embargo Period. An acknowledgement in the following form should be included, together with a link to the published version on the publisher's website: “This is a post-peer-review, pre-copyedit version of an article published in [insert journal title]. The final authenticated version is available online at: http://dx.doi.org/[insert DOI]”.The publisher's agreement states that: Author(s) retain the right to make an AAM (Author's Accepted Manuscript )of their Article available for public release on any of the following 12 months after first publication ("Embargo Period"): their employer's internal website; their institutional and/or funder repositories. AAMs may also be deposited in such repositories immediately on acceptance, provided that they are not made publicly available until after the Embargo Period. An acknowledgement in the following form should be included, together with a link to the published version on the publisher's website: “This is a post-peer-review, pre-copyedit version of an article published in [insert journal title]. The final authenticated version is available online at: http://dx.doi.org/[insert DOI]”.Purpose: Head and neck cancer (HNC) diagnosis and treatment are distressing and have immediate detrimental impacts on functioning and quality of life (QoL). Nevertheless, little is known about long-term psychosocial effects. The aim of this study was to determine the prevalence and correlates of clinical post-traumatic stress disorder (PTSD) and subclinical post-traumatic stress symptoms (PTSS) in HNC patients surviving more than 2 years since treatment and in their partners. Methods: HNC survivors identified from the cancer registry of a London hospital and their partners completed measures of PTSS, depression and anxiety, fear of cancer recurrence, social support, appearance concerns and health-related QoL. Data regarding their clinical and demographic characteristics were also collected. Correlations, as well as linear and logistic regression coefficients, were calculated to estimate associations with PTSS scores. Results: In this analysis of 93 HNC survivors, at a mean of 6 years (SD = 4) after treatment, 33.4% reported PTSS and 11.8% met the criteria for post-traumatic stress disorder (PTSD). Fear of cancer recurrence was independently associated with PTSS (p  .05). Conclusions: This is the first examination of post-traumatic stress in survivors of HNC and shows that high levels of cancer-related PTSS exist for many years after diagnosis in both patients and their partners.Doctoral Scholarship from Saving Faces—The Facial Surgery Research Foundation
    corecore