2,072 research outputs found

    Inhomogeneous superconductivity induced in a weak ferromagnet

    Get PDF
    Under certain conditions, the order parameter induced by a superconductor (S) in a ferromagnet (F) can be inhomogeneous and oscillating, which results e.g. in the so-called pi-coupling in S/F/S junctions. In principle, the inhomogeneous state can be induced at T_c as function of the F-layer thickness d_F in S/F bilayers and multilayers, which should result in a dip-like characteristic of T_c(d_F). We show the results of measurements on the S/F system Nb/Cu_{1-x}Ni_x, for Ni-concentrations in the range x = 0.5-0.7, where such effects might be expected. We find that the critical thickness for the occurrence of superconductivity is still relatively high, even for these weak ferromagnets. The resulting dip then is intrinsically shallow and difficult to observe, which explains the lack of a clear signature in the T_c(d_F) data.Comment: 4 pages, 4 figures. To be publishedin Physica C (proceedings of the Second Euroconference on Vortex Matter in Superconductors, Crete, 2001

    Phase-transitions in spin-crossover thin films probed by graphene transport measurements

    Full text link
    Future multi-functional hybrid devices might combine switchable molecules and 2D material-based devices. Spin-crossover compounds are of particular interest in this context since they exhibit bistability and memory effects at room temperature while responding to numerous external stimuli. Atomically-thin 2D materials such as graphene attract a lot of attention for their fascinating electrical, optical, and mechanical properties, but also for their reliability for room-temperature operations. Here, we demonstrate that thermally-induced spin-state switching of spin-crossover nanoparticle thin films can be monitored through the electrical transport properties of graphene lying underneath the films. Model calculations indicate that the charge carrier scattering mechanism in graphene is sensitive to the spin-state dependence of the relative dielectric constants of the spin-crossover nanoparticles. This graphene sensor approach can be applied to a wide class of (molecular) systems with tunable electronic polarizabilities.Comment: main text: 13 pages, 5 figures ; SI: 14 pages, 12 figure

    Antiferromagnetic Spin Fluctuations in the Metallic Phase of Quasi-Two-Dimensional Organic Superconductors

    Get PDF
    We give a quantitative analysis of the previously published nuclear magnetic resonance (NMR) experiments in the k-(ET)2X family of organic charge transfer salts by using the phenomenological spin fluctuation model of Moriya, and Millis, Monien and Pines (M-MMP). For temperatures above T_nmr ~ 50 K, the model gives a good quantitative description of the data in the metallic phases of several k-(ET)2X materials. These materials display antiferromagnetic correlation lengths which increase with decreasing temperature and grow to several lattice constants by T_nmr. It is shown that the fact that the dimensionless Korringa ratio is much larger than unity is inconsistent with a broad class of theoretical models (such as dynamical mean-field theory) which neglects spatial correlations and/or vertex corrections. For materials close to the Mott insulating phase the nuclear spin relaxation rate, the Knight shift and the Korringa ratio all decrease significantly with decreasing temperature below T_nmr. This cannot be described by the M-MMP model and the most natural explanation is that a pseudogap, similar to that observed in the underdoped cuprate superconductors, opens up in the density of states below T_nmr. Such a pseudogap has recently been predicted to occur in the dimerised organic charge transfer salts materials by the resonating valence bond (RVB) theory. We propose specific new experiments on organic superconductors to elucidate these issues. For example, measurements to see if high magnetic fields or high pressures can be used to close the pseudogap would be extremely valuable.Comment: 11 pages, 2 figures. Accepted for publication in Phys. Rev.

    COMPTEL solar flare observations

    Get PDF
    COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties

    Transport coefficients from the 2PI effective action

    Full text link
    We show that the lowest nontrivial truncation of the two-particle irreducible (2PI) effective action correctly determines transport coefficients in a weak coupling or 1/N expansion at leading (logarithmic) order in several relativistic field theories. In particular, we consider a single real scalar field with cubic and quartic interactions in the loop expansion, the O(N) model in the 2PI-1/N expansion, and QED with a single and many fermion fields. Therefore, these truncations will provide a correct description, to leading (logarithmic) order, of the long time behavior of these systems, i.e. the approach to equilibrium. This supports the promising results obtained for the dynamics of quantum fields out of equilibrium using 2PI effective action techniques.Comment: 5 pages, explanation in introduction expanded, summary added; to appear in PR

    Exact and Truncated Dynamics in Nonequilibrium Field Theory

    Get PDF
    Nonperturbative dynamics of quantum fields out of equilibrium is often described by the time evolution of a hierarchy of correlation functions, using approximation methods such as Hartree, large N, and nPI-effective action techniques. These truncation schemes can be implemented equally well in a classical statistical system, where results can be tested by comparison with the complete nonlinear evolution obtained by numerical methods. For a 1+1 dimensional scalar field we find that the early-time behaviour is reproduced qualitatively by the Hartree dynamics. The inclusion of direct scattering improves this to the quantitative level. We show that the emergence of nonthermal temperature profiles at intermediate times can be understood in terms of the fixed points of the evolution equations in the Hartree approximation. The form of the profile depends explicitly on the initial ensemble. While the truncated evolution equations do not seem to be able to get away from the fixed point, the full nonlinear evolution shows thermalization with a (surprisingly) slow relaxation.Comment: 30 pages with 12 eps figures, minor changes; to appear in Phys.Rev.

    COMPTEL: Instrument description and performance

    Get PDF
    The imaging Compton telescope (COMPTEL) is one of the four gamma ray detectors aboard the Compton Gamma Ray Observatory (GRO). COMPTEL is sensitive to gamma rays from 800 keV to 30 MeV with a field of view of approximately 1 sr. Its angular resolution ranges between 1 and 2 degrees depending on the energy and incidence angle. The energy resolution of better than 10 percent FWHM enables COMPTEL to provide spectral resolution in the regime of astrophysical nuclear lines. The effective area varies typically from 10 to 50 cm(exp 2) depending on the energy and event selections made. In its telescope mode, COMPTEL is able to study a wide variety of objects, pointlike as well as extended in space. With 0.125 msec timing resolution, pulsed emission can be studied. In the single detector mode, COMPTEL uses two of its detectors to study the temporal spectral evolution of strong gamma ray bursts or transients
    corecore