86 research outputs found

    An investigation of the performance of a new Mechanical thrombectomy device using Bond Graph modelling: application to the extraction of blood clots in the middle cerebral artery

    Get PDF
    A number of thrombectomy devices using a variety of methods have now been developed to facilitate clot removal. We present research involving one such experimental device recently developed in the UK, called a ‘GP’ Thrombus Aspiration Device (GPTAD). This device has the potential to bring about the extraction of a thrombus. Although the device is at a relatively early stage of development, the results look encouraging. In this work, we present an analysis and modeling of the GPTAD by means of the bond graph technique; it seems to be a highly effective method of simulating the device under a variety of conditions. Such modeling is useful in optimizing the GPTAD and predicting the result of clot extraction. The aim of this simulation model is to obtain the minimum pressure necessary to extract the clot and to verify that both the pressure and the time required to complete the clot extraction are realistic for use in clinical situations, and are consistent with any experimentally obtained data. We therefore consider aspects of rheology and mechanics in our modeling

    Additive Manufacturing Cases and a Vision for a Predictive Analytics and Additive Manufacturing Based Maintenance Business Model

    Get PDF
    AbstractThis chapter discusses two real-world cases of how additive manufacturing can be used in enhancing results in heart surgery and in cutting costs in the business of maintenance and refurbishing metal dies, both without a radical change in the business model. In addition to the two real-world cases we present a vision of how additive manufacturing technologies, together with predictive analytics, digitalization, and a high level of international networking could revolutionize the business models of international maintenance service businesses

    Bendability of machined aluminium Tailor-made blanks

    No full text

    Decoupling Minimal Surface Metamaterial Properties Through Multi-Material Hyperbolic Tilings

    Full text link
    Rapid advances in additive manufacturing have kindled widespread interest in the rational design of metamaterials with unique properties over the past decade. However, many applications require multi-physics metamaterials, where multiple properties are simultaneously optimized. This is challenging since different properties, such as mechanical and mass transport properties, typically impose competing requirements on the nano-/micro-/meso-architecture of metamaterials. Here, a parametric metamaterial design strategy that enables independent tuning of the effective permeability and elastic properties is proposed. Hyperbolic tiling theory is applied to devise simple templates, based on which triply periodic minimal surfaces (TPMS) are partitioned into hard and soft regions. Through computational analyses, it is demonstrated how the decoration of hard, soft, and void phases within the TPMS substantially enhances their permeability–elasticity property space and offers high tunability in the elastic properties and anisotropy at constant permeability. Also shown is that this permeability–elasticity balance is well captured using simple scaling laws. The proposed concept is demonstrated through multi-material additive manufacturing of representative specimens. The approach, which is generalizable to other designs, offers a route towards multi-physics metamaterials that need to simultaneously carry a load and enable mass transport, such as load-bearing heat exchangers or architected tissue-substituting meta-biomaterials

    Subject-specific modeling of the scapula bone tissue adaptation

    No full text
    Adaptation of the scapula bone tissue to mechanical loading is simulated in the current study using a subject-specific three-dimensional finite element model of an intact cadaveric scapula. The loads experienced by the scapula during different types of movements are determined using a subject-specific large-scale musculoskeletal model of the shoulder joint. The obtained density distributions are compared with the CT-measured density distribution of the same scapula. Furthermore, it is assumed that the CT-measured density distribution can be estimated as a weighted linear combination of the density distributions calculated for different loads experienced during daily life. An optimization algorithm is used to determine the weighting factors of fourteen different loads such that the difference between the weighted linear combination of the calculated density distributions and the CT-measured density is minimal. It is shown that the weighted linear combination of the calculated densities matches the CT-measured density distribution better than every one of the density distributions calculated for individual movements. The weighting factors of nine out of fourteen loads were estimated to be zero or very close to zero. The five loads that had larger weighting factors were associated with either one of the following categories: (1) small-load small-angle abduction or flexion movements that occur frequently during our daily lives or (2) large-load large-angle abduction or flexion movements that occur infrequently during our daily lives. (C) 2013 Elsevier Ltd. All rights reserved
    • …
    corecore