14 research outputs found

    Effects of two neuromuscular training programs on running biomechanics with load carriage: a study protocol for a randomised controlled trial

    Get PDF
    Background In recent years, athletes have ventured into ultra-endurance and adventure racing events, which tests their ability to race, navigate, and survive. These events often require race participants to carry some form of load, to bear equipment for navigation and survival purposes. Previous studies have reported specific alterations in biomechanics when running with load which potentially influence running performance and injury risk. We hypothesize that a biomechanically informed neuromuscular training program would optimize running mechanics during load carriage to a greater extent than a generic strength training program. Methods This will be a two group, parallel randomized controlled trial design, with single assessor blinding. Thirty healthy runners will be recruited to participate in a six weeks neuromuscular training program. Participants will be randomized into either a generic training group, or a biomechanically informed training group. Primary outcomes include self-determined running velocity with a 20 % body weight load, jump power, hopping leg stiffness, knee extensor and triceps-surae strength. Secondary outcomes include running kinetics and kinematics. Assessments will occur at baseline and post-training. Discussion To our knowledge, no training programs are available that specifically targets a runner’s ability to carry load while running. This will provide sport scientists and coaches with a foundation to base their exercise prescription on

    The hierarchy quorum sensing network in Pseudomonas aeruginosa

    Get PDF
    10.1007/s13238-014-0100-xProtein and Cell6126-4

    Secretion systems in Gram-negative bacteria: structural and mechanistic insights

    No full text
    Bacteria have evolved a remarkable array of sophisticated nanomachines to export various virulence factors across the bacterial cell envelope. In recent years, considerable progress has been made towards elucidating the structural and molecular mechanisms of the six secretion systems (types I–VI) of Gram-negative bacteria, the unique mycobacterial type VII secretion system, the chaperone–usher pathway and the curli secretion machinery. These advances have greatly enhanced our understanding of the complex mechanisms that these macromolecular structures use to deliver proteins and DNA into the extracellular environment or into target cells. In this Review, we explore the structural and mechanistic relationships between these single- and double-membrane-embedded systems, and we briefly discuss how this knowledge can be exploited for the development of new antimicrobial strategies

    The hierarchy quorum sensing network in Pseudomonas aeruginosa

    No full text

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF

    Listing of Protein Spectra

    No full text
    corecore