34 research outputs found

    Efficiency of Spermatogonial Dedifferentiation during Aging

    Get PDF
    Adult stem cells are critical for tissue homeostasis; therefore, the mechanisms utilized to maintain an adequate stem cell pool are important for the survival of an individual. In Drosophila, one mechanism utilized to replace lost germline stem cells (GSCs) is dedifferentiation of early progenitor cells. However, the average number of male GSCs decreases with age, suggesting that stem cell replacement may become compromised in older flies.Using a temperature sensitive allelic combination of Stat92E to control dedifferentiation, we found that germline dedifferentiation is remarkably efficient in older males; somatic cells are also effectively replaced. Surprisingly, although the number of somatic cyst cells also declines with age, the proliferation rate of early somatic cells, including cyst stem cells (CySCs) increases.These data indicate that defects in spermatogonial dedifferentiation are not likely to contribute significantly to an aging-related decline in GSCs. In addition, our findings highlight differences in the ways GSCs and CySCs age. Strategies to initiate or enhance the ability of endogenous, differentiating progenitor cells to replace lost stem cells could provide a powerful and novel strategy for maintaining tissue homeostasis and an alternative to tissue replacement therapy in older individuals

    Differential Roles of HOW in Male and Female Drosophila Germline Differentiation

    Get PDF
    The adult gonads in both male and female Drosophila melanogaster produce gametes that originate from a regenerative pool of germline stem cells (GSCs). The differentiation programme that produces gametes must be co-ordinated with GSC maintenance and proliferation in order to regulate tissue regeneration. The HOW RNA-binding protein has been shown to maintain mitotic progression of male GSCs and their daughters by maintenance of Cyclin B expression as well as suppressing accumulation of the differentiation factor Bam. Loss of HOW function in the male germline results in loss of GSCs due to a delay in G2 and subsequent apoptosis. Here we show that female how mutant GSCs do not have any cell cycle defects although HOW continues to bind bam mRNA and suppress Bam expression. The role of HOW in suppressing germ cell Bam expression appears to be conserved between sexes, leading to different cellular outcomes in how mutants due to the different functions of Bam. In addition the role in maintaining Cyclin B expression has not been conserved so female how GSCs differentiate rather than arrest

    Dynein light chain 1 functions in somatic cyst cells regulate spermatogonial divisions in Drosophila

    Get PDF
    Stem cell progeny often undergo transit amplifying divisions before differentiation. In Drosophila, a spermatogonial precursor divides four times within an enclosure formed by two somatic-origin cyst cells, before differentiating into spermatocytes. Although germline and cyst cell-intrinsic factors are known to regulate these divisions, the mechanistic details are unclear. Here, we show that loss of dynein-light-chain-1 (DDLC1/LC8) in the cyst cells eliminates bag-of-marbles (bam) expression in spermatogonia, causing gonial cell hyperplasia in Drosophila testis. The phenotype is dominantly enhanced by Dhc64C (cytoplasmic Dynein) and didum (Myosin V) loss-of-function alleles. Loss of DDLC1 or Myosin V in the cyst cells also affects their differentiation. Furthermore, cyst cell-specific loss of ddlc1 disrupts Armadillo, DE-cadherin and Integrin-Ξ²PS localizations in the cyst. Together, these results suggest that Dynein and Myosin V activities, and independent DDLC1 functions in the cyst cells organize the somatic microenvironment that regulates spermatogonial proliferation and differentiation
    corecore