33 research outputs found

    Reply to: “Impact of marine processes on flow dynamics of northern Antarctic Peninsula outlet glaciers” by Rott et al.

    Get PDF
    Replying to Rott et al. Nature Communications https://doi.org/10.1038/s41467-020-16658-y (2020)Publisher PDFPeer reviewe

    Progestin Receptor-Mediated Reduction of Anxiety-Like Behavior in Male Rats

    Get PDF
    BACKGROUND: It is well known progesterone can have anxiolytic-like effects in animals in a number of different behavioral testing paradigms. Although progesterone is known to influence physiology and behavior by binding to classical intracellular progestin receptors, progesterone's anxiety reducing effects have solely been attributed to its rapid non-genomic effects at the GABA A receptor. This modulation occurs following the bioconversion of progesterone to allopregnanolone. Seemingly paradoxical results from some studies suggested that the function of progesterone to reduce anxiety-like behavior may not be entirely clear; therefore, we hypothesized that progesterone might also act upon progestin receptors to regulate anxiety. METHODOLOGY/PRINCIPAL FINDINGS: To test this, we examined the anxiolytic-like effects of progesterone in male rats using the elevated plus maze, a validated test of anxiety, and the light/dark chamber in the presence or absence of a progestin receptor antagonist, RU 486. Here we present evidence suggesting that the anxiolytic-like effects of progesterone in male rats can be mediated, in part, by progestin receptors, as these effects are blocked by prior treatment with a progestin receptor antagonist. CONCLUSION/SIGNIFICANCE: This indicates that progesterone can act upon progestin receptors to regulate anxiety-like behavior in the male rat brain

    Excited-State Dynamics in Colloidal Semiconductor Nanocrystals

    Get PDF

    Trends and connections across the Antarctic cryosphere

    Get PDF
    Satellite observations have transformed our understanding of the Antarctic cryosphere. The continent holds the vast majority of Earth’s fresh water, and blankets swathes of the Southern Hemisphere in ice. Reductions in the thickness and extent of floating ice shelves have disturbed inland ice, triggering retreat, acceleration and drawdown of marine-terminating glaciers. The waxing and waning of Antarctic sea ice is one of Earth’s greatest seasonal habitat changes, and although the maximum extent of the sea ice has increased modestly since the 1970s, inter-annual variability is high, and there is evidence of longer-term decline in its extent

    Response of marine‐terminating glaciers to forcing: time scales, sensitivities, instabilities and stochastic dynamics

    No full text
    Recent observations indicate that many marine‐terminating glaciers in Greenland and Antarctica are currently retreating and thinning, potentially due to long‐term trends in climate forcing. In this study, we describe a simple two‐stage model that accurately emulates the response to external forcing of marine‐terminating glaciers simulated in a spatially extended model. The simplicity of the model permits derivation of analytical expressions describing the marine‐terminating glacier response to forcing. We find that there are two time scales that characterize the stable glacier response to external forcing, a fast time scale of decades to centuries, and a slow time scale of millennia. These two time scales become unstable at different thresholds of bed slope, indicating that there are distinct slow and fast forms of the marine ice sheet instability. We derive simple expressions for the approximate magnitude and transient evolution of the stable glacier response to external forcing, which depend on the equilibrium glacier state and the strength of nonlinearity in forcing processes. The slow response rate of marine‐terminating glaciers indicates that current changes at some glaciers are set to continue and accelerate in coming centuries in response to past climate forcing and that the current extent of change at these glaciers is likely a small fraction of the future committed change caused by past climate forcing. Finally, we find that changing the amplitude of natural fluctuations in some nonlinear forcing processes, such as ice shelf calving, changes the equilibrium glacier state

    Calving prediction from ice mélange motion [News]

    No full text
    High-frequency radar tracking of icebergs floating in front of a glacier in Greenland show that movements of the ice mélange consistently increase before calving events, indicating that mélange has the potential to modulate calving

    Calving prediction from ice mélange motion

    No full text
    corecore