15 research outputs found
MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales
Mathematical modeling and quantitative study of biological motility (in particular, of motility at microscopic scales) is producing new biophysical insight and is offering opportunities for new discoveries at the level of both fundamental science and technology. These range from the explanation of how complex behavior at the level of a single organism emerges from body architecture, to the understanding of collective phenomena in groups of organisms and tissues, and of how these forms of swarm intelligence can be controlled and harnessed in engineering applications, to the elucidation of processes of fundamental biological relevance at the cellular and sub-cellular level. In this paper, some of the most exciting new developments in the fields of locomotion of unicellular organisms, of soft adhesive locomotion across scales, of the study of pore translocation properties of knotted DNA, of the development of synthetic active solid sheets, of the mechanics of the unjamming transition in dense cell collectives, of the mechanics of cell sheet folding in volvocalean algae, and of the self-propulsion of topological defects in active matter are discussed. For each of these topics, we provide a brief state of the art, an example of recent achievements, and some directions for future research
Preparation, Luminescent Properties and Bioimaging Application of Quantum Dots Based on Si and SiC
International audienceWell-known, the interest to the colloidal solution with quantum dots (QDs) lies in their fluorescence properties. Among the advantages of QDs are the high resistance to photooxidation, the size and composition variation allowing to obtain the narrow emission spectra with high quantum yield from the ultraviolet to the near infrared region. In this chapter we present the last achievements in forming and bio-medical applications of luminescent Si and SiC QDs. It is shown that a broad size distribution of Si QDs are obtained at electrochemical etching. The dimensions of the Si QDs undergone filtering in colloidal solution vary discretely with a radius quantum equal to 0.12 nm. Existing of this quantum may correspond to step-like increasing of Si QDs radius on one new shell at the surface of Si QDs. The formed QDs show intense luminescent in visual region. However, one of the major drawbacks of Si QDs for bio-medical application is instability over time in water or buffer solutions. To overcome this drawback the several methods of surface functionalization are discussed. The SiC QDs are stable in water solutions and do not require supplementary surface functionalisation for bioimaging. A strong fluorescence from the SiC QDs, which undoubtedly penetrate into the cell, has been observed. The studying of health and cancer cells using SiC QDs shows that simple modification of surface charge of QDs gives strong opportunity to target the same QDs in intracellular space with their preferential localisation inside or outside the cell nucleus