521 research outputs found
Chiral tunneling and the Klein paradox in graphene
The so-called Klein paradox - unimpeded penetration of relativistic particles
through high and wide potential barriers - is one of the most exotic and
counterintuitive consequences of quantum electrodynamics (QED). The phenomenon
is discussed in many contexts in particle, nuclear and astro- physics but
direct tests of the Klein paradox using elementary particles have so far proved
impossible. Here we show that the effect can be tested in a conceptually simple
condensed-matter experiment by using electrostatic barriers in single- and
bi-layer graphene. Due to the chiral nature of their quasiparticles, quantum
tunneling in these materials becomes highly anisotropic, qualitatively
different from the case of normal, nonrelativistic electrons. Massless Dirac
fermions in graphene allow a close realization of Klein's gedanken experiment
whereas massive chiral fermions in bilayer graphene offer an interesting
complementary system that elucidates the basic physics involved.Comment: 15 pages, 4 figure
Bipolar supercurrent in graphene
Graphene -a recently discovered one-atom-thick layer of graphite- constitutes
a new model system in condensed matter physics, because it is the first
material in which charge carriers behave as massless chiral relativistic
particles. The anomalous quantization of the Hall conductance, which is now
understood theoretically, is one of the experimental signatures of the peculiar
transport properties of relativistic electrons in graphene. Other unusual
phenomena, like the finite conductivity of order 4e^2/h at the charge
neutrality (or Dirac) point, have come as a surprise and remain to be
explained. Here, we study the Josephson effect in graphene. Our experiments
rely on mesoscopic superconducting junctions consisting of a graphene layer
contacted by two closely spaced superconducting electrodes, where the charge
density can be controlled by means of a gate electrode. We observe a
supercurrent that, depending on the gate voltage, is carried by either
electrons in the conduction band or by holes in the valence band. More
importantly, we find that not only the normal state conductance of graphene is
finite, but also a finite supercurrent can flow at zero charge density. Our
observations shed light on the special role of time reversal symmetry in
graphene and constitute the first demonstration of phase coherent electronic
transport at the Dirac point.Comment: Under review, 12 pages, 4 Figs., suppl. info (v2 identical, resolved
file problems
Tailoring the atomic structure of graphene nanoribbons by STM lithography
The practical realization of nano-scale electronics faces two major
challenges: the precise engineering of the building blocks and their assembly
into functional circuits. In spite of the exceptional electronic properties of
carbon nanotubes only basic demonstration-devices have been realized by
time-consuming processes. This is mainly due to the lack of selective growth
and reliable assembly processes for nanotubes. However, graphene offers an
attractive alternative. Here we report the patterning of graphene nanoribbons
(GNRs) and bent junctions with nanometer precision, well-defined widths and
predetermined crystallographic orientations allowing us to fully engineer their
electronic structure using scanning tunneling microscope (STM) lithography. The
atomic structure and electronic properties of the ribbons have been
investigated by STM and tunneling spectroscopy measurements. Opening of
confinement gaps up to 0.5 eV, allowing room temperature operation of GNR-based
devices, is reported. This method avoids the difficulties of assembling
nano-scale components and allows the realization of complete integrated
circuits, operating as room temperature ballistic electronic devices.Comment: 8 pages text, 5 figures, Nature Nanotechnology, in pres
Ultra-low carrier concentration and surface dominant transport in Sb-doped Bi2Se3 topological insulator nanoribbons
A topological insulator is a new state of matter, possessing gapless
spin-locking surface states across the bulk band gap which has created new
opportunities from novel electronics to energy conversion. However, the large
concentration of bulk residual carriers has been a major challenge for
revealing the property of the topological surface state via electron transport
measurement. Here we report surface state dominated transport in Sb-doped
Bi2Se3 nanoribbons with very low bulk electron concentrations. In the
nanoribbons with sub-10nm thickness protected by a ZnO layer, we demonstrate
complete control of their top and bottom surfaces near the Dirac point,
achieving the lowest carrier concentration of 2x10^11/cm2 reported in
three-dimensional (3D) topological insulators. The Sb-doped Bi2Se3
nanostructures provide an attractive materials platform to study fundamental
physics in topological insulators, as well as future applications.Comment: 5 pages, 4 figures, 1 tabl
Modeling electromagnetic form factors of light and heavy pseudoscalar mesons
The electromagnetic form factors of light and heavy pseudoscalar mesons are
calculated within two covariant constituent-quark models, a light-front and a
dispersion relation approach. We investigate the details and physical origins
of the model dependence of various hadronic observables: the weak decay
constant, the charge radius and the elastic electromagnetic form factor.Comment: 6 pages, 4 figures, use revtex4. Figure 2 and references are
corrected. Acknoledgments are adde
Josephson supercurrent through a topological insulator surface state
Topological insulators are characterized by an insulating bulk with a finite
band gap and conducting edge or surface states, where charge carriers are
protected against backscattering. These states give rise to the quantum spin
Hall effect without an external magnetic field, where electrons with opposite
spins have opposite momentum at a given edge. The surface energy spectrum of a
threedimensional topological insulator is made up by an odd number of Dirac
cones with the spin locked to the momentum. The long-sought yet elusive
Majorana fermion is predicted to arise from a combination of a superconductor
and a topological insulator. An essential step in the hunt for this emergent
particle is the unequivocal observation of supercurrent in a topological phase.
Here, we present the first measurement of a Josephson supercurrent through a
topological insulator. Direct evidence for Josephson supercurrents in
superconductor (Nb) - topological insulator (Bi2Te3) - superconductor e-beam
fabricated junctions is provided by the observation of clear Shapiro steps
under microwave irradiation, and a Fraunhofer-type dependence of the critical
current on magnetic field. The dependence of the critical current on
temperature and length shows that the junctions are in the ballistic limit.
Shubnikov-de Haas oscillations in magnetic fields up to 30 T reveal a
topologically non-trivial two-dimensional surface state. We argue that the
ballistic Josephson current is hosted by this surface state despite the fact
that the normal state transport is dominated by diffusive bulk conductivity.
The lateral Nb-Bi2Te3-Nb junctions hence provide prospects for the realization
of devices supporting Majorana fermions
Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cu thin films
The outstanding electrical and mechanical properties of graphene make it very
attractive for several applications, Nanoelectronics above all. However a
reproducible and non destructive way to produce high quality, large-scale area,
single layer graphene sheets is still lacking. Chemical Vapour Deposition of
graphene on Cu catalytic thin films represents a promising method to reach this
goal, because of the low temperatures (T < 900 Celsius degrees) involved during
the process and of the theoretically expected monolayer self-limiting growth.
On the contrary such self-limiting growth is not commonly observed in
experiments, thus making the development of techniques allowing for a better
control of graphene growth highly desirable. Here we report about the local
ablation effect, arising in Raman analysis, due to the heat transfer induced by
the laser incident beam onto the graphene sample.Comment: v1:9 pages, 8 figures, submitted to SpringerPlus; v2: 11 pages,
PDFLaTeX, 9 figures, revised peer-reviewed version resubmitted to
SpringerPlus; 1 figure added, figure 1 and 4 replaced,typos corrected,
"Results and discussion" section significantly extended to better explain
etching mechanism and features of Raman spectra, references adde
Artificial graphene as a tunable Dirac material
Artificial honeycomb lattices offer a tunable platform to study massless
Dirac quasiparticles and their topological and correlated phases. Here we
review recent progress in the design and fabrication of such synthetic
structures focusing on nanopatterning of two-dimensional electron gases in
semiconductors, molecule-by-molecule assembly by scanning probe methods, and
optical trapping of ultracold atoms in crystals of light. We also discuss
photonic crystals with Dirac cone dispersion and topologically protected edge
states. We emphasize how the interplay between single-particle band structure
engineering and cooperative effects leads to spectacular manifestations in
tunneling and optical spectroscopies.Comment: Review article, 14 pages, 5 figures, 112 Reference
Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials
Recent years witnessed a rapid growth of interest of scientific and
engineering communities to thermal properties of materials. Carbon allotropes
and derivatives occupy a unique place in terms of their ability to conduct
heat. The room-temperature thermal conductivity of carbon materials span an
extraordinary large range - of over five orders of magnitude - from the lowest
in amorphous carbons to the highest in graphene and carbon nanotubes. I review
thermal and thermoelectric properties of carbon materials focusing on recent
results for graphene, carbon nanotubes and nanostructured carbon materials with
different degrees of disorder. A special attention is given to the unusual size
dependence of heat conduction in two-dimensional crystals and, specifically, in
graphene. I also describe prospects of applications of graphene and carbon
materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
- …