24 research outputs found

    The stellar orbit distribution in present-day galaxies inferred from the CALIFA survey

    Get PDF
    Galaxy formation entails the hierarchical assembly of mass, along with the condensation of baryons and the ensuing, self-regulating star formation. The stars form a collisionless system whose orbit distribution retains dynamical memory that can constrain a galaxy's formation history. The ordered-rotation dominated orbits with near maximum circularity λz1\lambda_z \simeq1 and the random-motion dominated orbits with low circularity λz0\lambda_z \simeq0 are called kinematically cold and kinematically hot, respectively. The fraction of stars on `cold' orbits, compared to the fraction of stars on `hot' orbits, speaks directly to the quiescence or violence of the galaxies' formation histories. Here we present such orbit distributions, derived from stellar kinematic maps via orbit-based modelling for a well defined, large sample of 300 nearby galaxies. The sample, drawn from the CALIFA survey, includes the main morphological galaxy types and spans the total stellar mass range from 108.710^{8.7} to 1011.910^{11.9} solar masses. Our analysis derives the orbit-circularity distribution as a function of galaxy mass, p(λz  M)p(\lambda_z~|~M_\star), and its volume-averaged total distribution, p(λz)p(\lambda_z). We find that across most of the considered mass range and across morphological types, there are more stars on `warm' orbits defined as 0.25λz0.80.25\le \lambda_z \le 0.8 than on either `cold' or `hot' orbits. This orbit-based "Hubble diagram" provides a benchmark for galaxy formation simulations in a cosmological context
    corecore