31 research outputs found
Rationalization and Design of the Complementarity Determining Region Sequences in an Antibody-Antigen Recognition Interface
Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor) interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity) and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes
Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells
Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies
Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources
Atmospheric methane (CH(4)) increased through much of the twentieth century, but this trend gradually weakened until a stable state was temporarily reached around the turn of the millennium, after which levels increased once more. The reasons for the slowdown are incompletely understood, with past work identifying changes in fossil fuel, wetland and agricultural sources and hydroxyl (OH) sinks as important causal factors. Here we show that the late-twentieth-century changes in the CH(4) growth rates are best explained by reduced microbial sources in the Northern Hemisphere. Our results, based on synchronous time series of atmospheric CH(4) mixing and (13)C/(12)C ratios and a two-box atmospheric model, indicate that the evolution of the mixing ratio requires no significant change in Southern Hemisphere sources between 1984 and 2005. Observed changes in the interhemispheric difference of (13)C effectively exclude reduced fossil fuel emissions as the primary cause of the slowdown. The (13)C observations are consistent with long-term reductions in agricultural emissions or another microbial source within the Northern Hemisphere. Approximately half (51 ± 18%) of the decrease in Northern Hemisphere CH(4) emissions can be explained by reduced emissions from rice agriculture in Asia over the past three decades associated with increases in fertilizer application and reductions in water use