106 research outputs found

    Interocular yoking in human saccades examined by mutual information analysis

    Get PDF
    International audienceABSTRACT : BACKGROUND : Saccadic eye movements align the two eyes precisely to foveate a target. Trial-by-trial variance of eye movement is always observed within an identical experimental condition. This has often been treated as experimental error without addressing its significance. The present study examined statistical linkages between the two eyes' movements, namely interocular yoking, for the variance of eye position and velocity. METHODS : Horizontal saccadic movements were recorded from twelve right-eye-dominant subjects while they decided on saccade direction in Go-Only sessions and on both saccade execution and direction in Go/NoGo sessions. We used infrared corneal reflection to record simultaneously and independently the movement of each eye. Quantitative measures of yoking were provided by mutual information analysis of eye position or velocity, which is sensitive to both linear and non-linear relationships between the eyes' movements. Our mutual information analysis relied on the variance of the eyes movements in each experimental condition. The range of movements for each eye varies for different conditions so yoking was further studied by comparing GO-Only vs. Go/NoGo sessions, leftward vs. rightward saccades. RESULTS : Mutual information analysis showed that velocity yoking preceded positional yoking. Cognitive load increased trial variances of velocity with no increase in velocity yoking, suggesting that cognitive load may alter neural processes in areas to which oculomotor control is not tightly linked. The comparison between experimental conditions showed that interocular linkage in velocity variance of the right eye lagged that of the left eye during saccades. CONCLUSIONS : We conclude quantitative measure of interocular yoking based on trial-to-trial variance within a condition, as well as variance between conditions, provides a powerful tool for studying the binocular movement mechanism

    Neural Correlates of Induced Light Experience during Meditation: A Pilot Hyperscanning Study

    Get PDF
    Certain individuals during deep meditative states can transmitt and give out an aura or ‘light, which is perceived by others through some unknown connections, visual, telepathic or other. Despite various anecdotal, historical accounts of such induced light experience (ILE), its underlying neural mechanism is not known. In this pilot study, we investigated the neural correlates of ILE by simultaneously recording the EEGs of an expert Teacher, who is claimed to elicit ILE, and his Pupil (N=2) during joint sessions under various instructions, given separately to the Teacher (transmit/ do not transmit) and to the Pupil (receive/ do not receive). In a further condition both teacher and pupil wear opaque goggles during transmit/receive instruction, limiting the visual/outputinput. We observed a robust increase in the high frequency beta (12-30 Hz) and gamma oscillations (30-70 Hz) in the Teacher’s brain whenever he was instructed to transmit. Electric field tomography analysis localized these effects over several brain regions including the fusiform gyrus, angular gyrus and the cerebellum. Finally, we found that the Teacher’s and Pupil’s brain responses were synchronized, especially in the alpha band (8-12 Hz) during transmit/receive condition, and the information flow was directional, i.e. from the Teacher to the Pupil; interestingly, this enhanced interbrain synchrony disappeared with opaque goggles. These results were interpreted in terms of heightened internally selective attention as manifested by high frequency beta-gamma oscillations and of joint attention as manifested by interbrain alpha synchrony. Altogether, our results provide the first neuroscientific evidence underlying the phenomenological experience of induced light

    Wired for Her Face? Male Attentional Bias for Female Faces

    Get PDF
    Under conditions of inattention or deficits in orienting attention, special classes of stimuli (e.g. faces, bodies) are more likely to be perceived than other stimuli. This suggests that biologically salient visual stimuli automatically recruit attention, even when they are task-irrelevant or ignored. Here we report results from a behavioral experiment with female and male subjects and two magnetoencephalography (MEG) experiments with male subjects only, in which we investigated attentional capture with face and hand stimuli. In both the behavioral and MEG experiments, subjects were required to count the number of gender-specific targets from either face or hand categories within a block of stimuli. In the behavioral experiment, we found that male subjects were significantly more accurate in response to female than male face target blocks. There was no corresponding effect found in response to hand target blocks. Female subjects did not show a gender-based difference in response to face or hand target blocks. MEG results indicated that the male subjects’ responses to face stimuli in primary visual cortex (V1) and the face-selective part of the fusiform gyrus (FG) were reduced when male face stimuli were not relevant to the task, whereas female faces maintained a strong response in these areas in both task-relevant and task-irrelevant conditions. These results suggest that within the male brain, female face stimuli are more resilient to suppression than male faces, once attention is drawn to the part of the visual field where the face appears

    Patterns of cortical activity during the observation of Public Service Announcements and commercial advertisings

    Get PDF
    Background: In the present research we were interested to study the cerebral activity of a group of healthy subjects during the observation a documentary intermingled by a series of TV advertisements. In particular, we desired to examine whether Public Service Announcements (PSAs) are able to elicit a different pattern of activity, when compared with a different class of commercials, and correlate it with the memorization of the showed stimuli, as resulted from a following subject's verbal interview.Methods: We recorded the EEG signals from a group of 15 healthy subjects and applied the High Resolution EEG techniques in order to estimate and map their Power Spectral Density (PSD) on a realistic cortical model. The single subjects' activities have been z-score transformed and then grouped to define four different datasets, related to subjects who remembered and forgotten the PSAs and to subjects who remembered and forgotten cars commercials (CAR) respectively, which we contrasted to investigate cortical areas involved in this encoding process. . Results: The results we here present show that the cortical activity elicited during the observation of the TV commercials that were remembered (RMB) is higher and localized in the left frontal brain areas when compared to the activity elicited during the vision of the TV commercials that were forgotten (FRG) in theta and gamma bands for both categories of advertisements (PSAs and CAR). Moreover, the cortical maps associated with the PSAs also show an increase of activity in the alpha and beta band.Conclusions: In conclusion, the TV advertisements that will be remembered by the experimental population have increased their cerebral activity, mainly in the left hemisphere. These results seem to be congruent with and well inserted in the already existing literature, on this topic, related to the HERA model. The different pattern of activity in different frequency bands elicited by the observation of PSAs may be justified by the existence of additional cortical networks processing these kind of audiovisual stimuli. Further research with an extended set of subjects will be necessary to further validate the observations reported in this paper. © 2010 Babiloni et al; licensee BioMed Central Ltd

    Fetus-derived DLK1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction.

    Get PDF
    Pregnancy is a state of high metabolic demand. Fasting diverts metabolism to fatty acid oxidation, and the fasted response occurs much more rapidly in pregnant women than in non-pregnant women. The product of the imprinted DLK1 gene (delta-like homolog 1) is an endocrine signaling molecule that reaches a high concentration in the maternal circulation during late pregnancy. By using mouse models with deleted Dlk1, we show that the fetus is the source of maternal circulating DLK1. In the absence of fetally derived DLK1, the maternal fasting response is impaired. Furthermore, we found that maternal circulating DLK1 levels predict embryonic mass in mice and can differentiate healthy small-for-gestational-age (SGA) infants from pathologically small infants in a human cohort. Therefore, measurement of DLK1 concentration in maternal blood may be a valuable method for diagnosing human disorders associated with impaired DLK1 expression and to predict poor intrauterine growth and complications of pregnancy.M.A.M.C. was supported by a PhD studentship from the Cambridge Centre for Trophoblast Research. Research was supported by grants from the MRC (MR/J001597/1 and MR/L002345/1), the Medical College of Saint Bartholomew's Hospital Trust, a Wellcome Trust Investigator Award, EpigeneSys (FP7 Health-257082), EpiHealth (FP7 Health-278414), a Herchel Smith Fellowship (N.T.) and NIH grant RO1 DK89989. The contents are the authors' sole responsibility and do not necessarily represent official NIH views. We thank G. Burton for invaluable support, and M. Constância and I. Sandovici (University of Cambridge) for the Meox2-cre mice. We are extremely grateful to all of the participants in the Pregnancy Outcome Prediction study. This work was supported by the NIHR Cambridge Comprehensive Biomedical Research Centre (Women's Health theme) and project grants from the MRC (G1100221) and Sands (Stillbirth and Neonatal Death Charity). The study was also supported by GE Healthcare (donation of two Voluson i ultrasound systems for this study) and by the NIHR Cambridge Clinical Research Facility, where all research visits took place.This is the author accepted manuscript. The final version is available from Nature Publishing Group via https://doi.org/10.1038/ng.369

    Altered Resting State in Diabetic Neuropathic Pain

    Get PDF
    BACKGROUND: The spontaneous component of neuropathic pain (NP) has not been explored sufficiently with neuroimaging techniques, given the difficulty to coax out the brain components that sustain background ongoing pain. Here, we address for the first time the correlates of this component in an fMRI study of a group of eight patients suffering from diabetic neuropathic pain and eight healthy control subjects. Specifically, we studied the functional connectivity that is associated with spontaneous neuropathic pain with spatial independent component analysis (sICA). PRINCIPAL FINDINGS: Functional connectivity analyses revealed a cortical network consisting of two anti-correlated patterns: one includes the left fusiform gyrus, the left lingual gyrus, the left inferior temporal gyrus, the right inferior occipital gyrus, the dorsal anterior cingulate cortex bilaterally, the pre and postcentral gyrus bilaterally, in which its activity is correlated negatively with pain and positively with the controls; the other includes the left precuneus, dorsolateral prefrontal, frontopolar cortex (both bilaterally), right superior frontal gyrus, left inferior frontal gyrus, thalami, both insulae, inferior parietal lobuli, right mammillary body, and a small area in the left brainstem, in which its activity is correlated positively with pain and negatively with the controls. Furthermore, a power spectra analyses revealed group differences in the frequency bands wherein the sICA signal was decomposed: patients' spectra are shifted towards higher frequencies. CONCLUSION: In conclusion, we have characterized here for the first time a functional network of brain areas that mark the spontaneous component of NP. Pain is the result of aberrant default mode functional connectivity

    The impetus theory in judgments about object motion: A new perspective

    Full text link
    Several tendencies found in explicit judgments about object motion have been interpreted as evidence that people possess a naive theory of impetus. The theory states that objects that are caused to move by other objects acquire force that determines the kind of motion exhibited by the object, and that this force gradually dissipates over time. I argue that the findings can better be understood as manifestations of a general understanding of externally caused motion based on experiences of acting on objects. Experiences of acting on objects yield the idea that properties of the cause of motion are transmitted to the effect object. This idea functions as a heuristic for explicit predictions of object motion under conditions of uncertainty. This accounts not only for the findings taken as evidence for the impetus theory, but also for several findings that fall outside the scope of the impetus theory. It has also been claimed that judgments about the location at which a moving object disappeared are influenced by the impetus theory. I argue that these judgments are better explained in a different way, as best-guess extrapolations made by the visual system as a practical guide to interactions with the object, such as interception
    corecore