291 research outputs found

    B mu G@Sbase - a microarray database and analysis tool

    Get PDF
    The manufacture and use of a whole-genome microarray is a complex process and it is essential that all data surrounding the process is stored, is accessible and can be easily associated with the data generated following hybridization and scanning. As part of a program funded by the Wellcome Trust, the Bacterial Microarray Group at St. George's Hospital Medical School (BμG@S) will generate whole-genome microarrays for 12 bacterial pathogens for use in collaboration with specialist research groups. BμG@S will collaborate with these groups at all levels, including the experimental design, methodology and analysis. In addition, we will provide informatic support in the form of a database system (BμG@Sbase). BμG@Sbase will provide access through a web interface to the microarray design data and will allow individual users to store their data in a searchable, secure manner. Tools developed by BμG@S in collaboration with specific research groups investigating analysis methodology will also be made available to those groups using the arrays and submitting data to BμG@Sbase

    B mu G@Sbase-a microbial gene expression and comparative genomic database

    Get PDF
    The reducing cost of high-throughput functional genomic technologies is creating a deluge of high volume, complex data, placing the burden on bioinformatics resources and tool development. The Bacterial Microarray Group at St George's (BμG@S) has been at the forefront of bacterial microarray design and analysis for over a decade and while serving as a hub of a global network of microbial research groups has developed BμG@Sbase, a microbial gene expression and comparative genomic database. BμG@Sbase (http://bugs.sgul.ac.uk/bugsbase/) is a web-browsable, expertly curated, MIAME-compliant database that stores comprehensive experimental annotation and multiple raw and analysed data formats. Consistent annotation is enabled through a structured set of web forms, which guide the user through the process following a set of best practices and controlled vocabulary. The database currently contains 86 expertly curated publicly available data sets (with a further 124 not yet published) and full annotation information for 59 bacterial microarray designs. The data can be browsed and queried using an explorer-like interface; integrating intuitive tree diagrams to present complex experimental details clearly and concisely. Furthermore the modular design of the database will provide a robust platform for integrating other data types beyond microarrays into a more Systems analysis based future

    Genomic variations define divergence of water/wildlife-associated Campylobacter jejuni niche specialists from common clonal complexes

    Get PDF
    Although the major food-borne pathogen Campylobacter jejuni has been isolated from diverse animal, human and environmental sources, our knowledge of genomic diversity in C. jejuni is based exclusively on human or human food-chain-associated isolates. Studies employing multilocus sequence typing have indicated that some clonal complexes are more commonly associated with particular sources. Using comparative genomic hybridization on a collection of 80 isolates representing diverse sources and clonal complexes, we identified a separate clade comprising a group of water/wildlife isolates of C. jejuni with multilocus sequence types uncharacteristic of human food-chain-associated isolates. By genome sequencing one representative of this diverse group (C. jejuni 1336), and a representative of the bank-vole niche specialist ST-3704 (C. jejuni 414), we identified deletions of genomic regions normally carried by human food-chain-associated C. jejuni. Several of the deleted regions included genes implicated in chicken colonization or in virulence. Novel genomic insertions contributing to the accessory genomes of strains 1336 and 414 were identified. Comparative analysis using PCR assays indicated that novel regions were common but not ubiquitous among the water/wildlife group of isolates, indicating further genomic diversity among this group, whereas all ST-3704 isolates carried the same novel accessory regions. While strain 1336 was able to colonize chicks, strain 414 was not, suggesting that regions specifically absent from the genome of strain 414 may play an important role in this common route of Campylobacter infection of humans. We suggest that the genomic divergence observed constitutes evidence of adaptation leading to niche specialization

    Novel associations for hypothyroidism include known autoimmune risk loci

    Get PDF
    Hypothyroidism is the most common thyroid disorder, affecting about 5% of the general population. Here we present the first large genome-wide association study of hypothyroidism, in 2,564 cases and 24,448 controls from the customer base of 23andMe, Inc., a personal genetics company. We identify four genome-wide significant associations, two of which are well known to be involved with a large spectrum of autoimmune diseases: rs6679677 near _PTPN22_ and rs3184504 in _SH2B3_ (p-values 3.5e-13 and 3.0e-11, respectively). We also report associations with rs4915077 near _VAV3_ (p-value 8.3e-11), another gene involved in immune function, and rs965513 near _FOXE1_ (p-value 3.1e-14). Of these, the association with _PTPN22_ confirms a recent small candidate gene study, and _FOXE1_ was previously known to be associated with thyroid-stimulating hormone (TSH) levels. Although _SH2B3_ has been previously linked with a number of autoimmune diseases, this is the first report of its association with thyroid disease. The _VAV3_ association is novel. These results suggest heterogeneity in the genetic etiology of hypothyroidism, implicating genes involved in both autoimmune disorders and thyroid function. Using a genetic risk profile score based on the top association from each of the four genome-wide significant regions in our study, the relative risk between the highest and lowest deciles of genetic risk is 2.1

    Retinotopic Maps, Spatial Tuning, and Locations of Human Visual Areas in Surface Coordinates Characterized with Multifocal and Blocked fMRI Designs

    Get PDF
    The localization of visual areas in the human cortex is typically based on mapping the retinotopic organization with functional magnetic resonance imaging (fMRI). The most common approach is to encode the response phase for a slowly moving visual stimulus and to present the result on an individual's reconstructed cortical surface. The main aims of this study were to develop complementary general linear model (GLM)-based retinotopic mapping methods and to characterize the inter-individual variability of the visual area positions on the cortical surface. We studied 15 subjects with two methods: a 24-region multifocal checkerboard stimulus and a blocked presentation of object stimuli at different visual field locations. The retinotopic maps were based on weighted averaging of the GLM parameter estimates for the stimulus regions. In addition to localizing visual areas, both methods could be used to localize multiple retinotopic regions-of-interest. The two methods yielded consistent retinotopic maps in the visual areas V1, V2, V3, hV4, and V3AB. In the higher-level areas IPS0, VO1, LO1, LO2, TO1, and TO2, retinotopy could only be mapped with the blocked stimulus presentation. The gradual widening of spatial tuning and an increase in the responses to stimuli in the ipsilateral visual field along the hierarchy of visual areas likely reflected the increase in the average receptive field size. Finally, after registration to Freesurfer's surface-based atlas of the human cerebral cortex, we calculated the mean and variability of the visual area positions in the spherical surface-based coordinate system and generated probability maps of the visual areas on the average cortical surface. The inter-individual variability in the area locations decreased when the midpoints were calculated along the spherical cortical surface compared with volumetric coordinates. These results can facilitate both analysis of individual functional anatomy and comparisons of visual cortex topology across studies

    Clinical use of Whole Genome Sequencing for Mycobacterium tuberculosis

    Get PDF
    Drug resistant tuberculosis (TB) remains a major challenge to global health and to healthcare in the UK. In 2014, England recorded 6520 cases of TB of which 1.4% were multi-drug resistant (MDR-TB). Extensively drug resistant TB (XDR-TB) occurs at a much lower rate, but the impact on the patient and hospital is severe. Current diagnostic methods such as drug susceptibility testing and targeted molecular tests are slow to return or examine only a limited number of target regions respectively. Faster, more comprehensive diagnostics will enable earlier use of the most appropriate drug regimen thus improving patient outcome and reducing overall healthcare costs. Whole genome sequencing has been shown to provide a rapid and comprehensive view of the genotype of the organism and thus enable reliable prediction of the drug susceptibility phenotype within a clinically relevant time frame. In addition it provides the highest resolution when investigating transmission events in possible outbreak scenarios. However, robust software and database tools need to be developed for the full potential to be realized in this specialized area of medicine

    Deformation analysis of a metropolis from C- to X-band PSI: proof-of-concept with Cosmo-Skymed over Rome, Italy

    Get PDF
    Stability of monuments and subsidence of residential quarters in Rome (Italy) are depicted based on geospatial analysis of more than 310,000 Persistent Scatterers (PS) obtained from Stanford Method for Persistent Scatterers (StaMPS) processing of 32 COSMO-SkyMed 3m-resolution HH StripMap ascending mode scenes acquired between 21 March 2011 and 10 June 2013. COSMO-SkyMed PS densities and associated displacement velocities are compared with almost 20 years of historical C-band ERS- 1/2, ENVISAT and RADARSAT-1/2 imagery. Accounting for differences in image processing algorithms and satellite acquisition geometries, we assess the feasibility of ground motion monitoring in big cities and metropolitan areas by coupling newly acquired and legacy SAR in full time series. Limitations and operational benefits of the transition from medium resolution C-band to high resolution X-band PS data are discussed, alongside the potential impact on the management of expanding urban environments
    • …
    corecore